• Title/Summary/Keyword: Visualization system

Search Result 1,951, Processing Time 0.029 seconds

Flow Visualization of Pulsatile Flow in a Branching Tube using the PIV System and Numerical Analysis (PIV와 수치해석을 이용한 분지관내 맥동유동의 가시화)

  • Roh, Hyung-Woon;Suh, Sang-Ho;Yoo, Sang-Sin
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.535-540
    • /
    • 2000
  • The objective of the present study is to visualize the pulsatile flow fields by using three-dimensional computer simulation and the PIV system. A closed flow loop system was built for the steady and unsteady experiments. The Harvard pulsatile pump was used to generate the pulsatile pressure and velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow field. Two consecutive particle images were captured by a CCD camera for the image processing. The cross-correlation method in combination with the moving searching area algorithm was applied for the image processing of the flow visualization. The pulsatile flow fields were visualized effectively by the PIV system in conjunction with the applied algorithm. The range validation and the area interpolation methods were used to obtain the final velocity vectors with high accuracy. The finite volume predictions were used to analyze three-dimensional flow patterns in the bifurcation model. The results of the PIV experiment and the computer simulation are in good agreement and the results show the recirculation zones and formation of the paired secondary flow distal to the apex of the bifurcated model. The results also show that the branch flow is pushed strongly to the inner wall due to the inertial force effect and helical motions are generated as the flow proceeds toward the outer wall.

  • PDF

3D Spatial Interaction Method using Visual Dynamics and Meaning Production of Character

  • Lim, Sooyeon
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.130-139
    • /
    • 2018
  • This study is to analyze the relationship between character and human semantic production through research on character visualization artworks and to develop a creative platform that visually expresses the formative and semantic dynamics of characters using the results will be. The 3D spatial interaction system using the character visualization proposed generates the transformation of the character in real time using the interaction with user and the deconstruction of the character structure. Transformations of characters including the intentions of the viewers provide a dynamic visual representation to the viewer and maximize the efficiency of meaning transfer by producing various related meanings. The method of dynamic deconstruction and reconstruction of the characters provided by this system creates special shapes that viewers cannot imagine until now and further extends the interpretation range of the meaning of the characters. Therefore, the proposed system not only induces an active viewing attitude from viewers, but also gives them an opportunity to enjoy watching the artwork and demonstrate creativity as a creator. This system induces new gestures of the viewer in real time through the transformation of characters in accordance with the viewer''s gesture, and has the feature of exchanging emotions with viewers.

Power-Flow Simulator with Visualization Function Based on IEEE Common Data Format

  • Sugino, Shohei;Sekiya, Hiroo
    • Journal of Multimedia Information System
    • /
    • v.3 no.4
    • /
    • pp.161-168
    • /
    • 2016
  • In this paper, a power flow simulator, which visualizes power flow and system configuration, is proposed and implemented. Generally, it is necessary to prepare a text file with power-system descriptions, which is one of the barriers for power-flow simulations. The proposed simulator has a function of automatic generations of IEEE common data format files from user-drawn power-system diagrams. Therefore, it is possible for users to carry out simulations only by drawing power system on display. In addition, the proposed simulator also has a function that power-system diagram is illustrated automatically from an IEEE common data format file. By using this function, it is possible to visualize amounts and directions of power flows on the bus-system diagram, which helps users to comprehend network dynamics intuitively. Because the proposed simulator allows including renewable-resource generators in power systems, it is useful to evaluate the power distribution system. It is shown in this paper that the proposed simulator can make IEEE common data format files correctly and illustrate intuitive power flow.

Effect of Distilled Water Supply Method on Performance of PEMWE Typed Hydrogen Generators for Inhalation (흡입용 PEMWE형 수소 발생기에서 증류수 공급 방법이 성능에 미치는 영향)

  • In-Soo, You;Hyunwoo, Bae;Joon Hyun, Kim;Jaeyong, Sung
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.117-127
    • /
    • 2022
  • The present study has investigated the performance of hydrogen gas generators for inhalation purposes based on polyelectrolyte membrane water electrolysis (PEMWE). The system applied two watering methods. One is pumped water (pumping system) and the other is gravity-fed water without a pump (non-pumping system). The cell efficiencies were compared by measuring the cell voltage and temperature in the hydrogen gas generator, respectively. The results show that the cell voltage and temperature increase with the cell current. The cell temperature is lower in the pumping system than that in the non-pumping system at a given cell current. Even though the amount of hydrogen production is the same regardless of the pumping system, the cell efficiency of the hydrogen gas generator in the non-pumping system is better than that in the pumping system.

Numerical Analysis and Flow Visualization Study on Two-phase Flow Characteristics in Annular Ejector Loop (환형 이젝터 루프 내부의 이상유동특성 파악을 위한 수치해석 및 유동가시화 연구)

  • Lee, Dong-Yeop;Kim, Yoon-Kee;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.47-53
    • /
    • 2011
  • A water driven ejector loop was designed and constructed for air absorption. The used ejector was horizontally installed in the loop and annular water jet at the throat entrained air through the circular pipe placed at the center of the ejector. Wide range of water flow rate was provided using two kinds of pumps in the loop. The tested range of water flow rate was 100${\ell}$ /min to 1,000 ${\ell}$/min. Two-phase flow inside the ejector loop was simulated by CFD analysis. Homogeneous particle model was used for void fraction prediction. Water and air flow rates and pressure drop through the ejector were automatically recorded by using the LabView based data acquisition system. Flow characteristics and air bubble velocity field downstream of the ejector were investigated by two-phase flow visualization and PIV measurement based on bubble shadow images. Overall performance of the two-phase ejector predicted by the CFD simulation agrees well with that of the experiment.

Interactive Visualization for Patient-to-Patient Comparison

  • Nguyen, Quang Vinh;Nelmes, Guy;Huang, Mao Lin;Simoff, Simeon;Catchpoole, Daniel
    • Genomics & Informatics
    • /
    • v.12 no.1
    • /
    • pp.21-34
    • /
    • 2014
  • A visual analysis approach and the developed supporting technology provide a comprehensive solution for analyzing large and complex integrated genomic and biomedical data. This paper presents a methodology that is implemented as an interactive visual analysis technology for extracting knowledge from complex genetic and clinical data and then visualizing it in a meaningful and interpretable way. By synergizing the domain knowledge into development and analysis processes, we have developed a comprehensive tool that supports a seamless patient-to-patient analysis, from an overview of the patient population in the similarity space to the detailed views of genes. The system consists of multiple components enabling the complete analysis process, including data mining, interactive visualization, analytical views, and gene comparison. We demonstrate our approach with medical scientists on a case study of childhood cancer patients on how they use the tool to confirm existing hypotheses and to discover new scientific insights.

Flame Visualization and Flame Characteristics of Spark Plug with Pre-ignition Chamber (예연소실 점화플러그의 화염가시화와 화염전파특성)

  • Jie, Myoung Seok;Johng, In Tae
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.3
    • /
    • pp.51-58
    • /
    • 2016
  • New concept spark plug was developed to study its influence on the combustion characteristics of SI engine. It has pre-ignition chamber at the lower end of spark plug and flame hole, in which fresh mixture gas can be put in through the flame hole without any fuel supply system. This spark plug was tested in a single cylinder engine dynamometer for different air fuel ratio to measure the fuel consumption rate, emission gases, and MBT timing. And constant volume combustion chamber was made to understand flame characteristics of spark plug. New spark plug induced fast burn compared to the conventional spark plug and its effects were increased in lean air fuel ratio. Pre-ignition chamber spark plug with 5 holes which had adjusted size was more stable and effective in combustion performance than pre-ignition chamber spark plug with 1 hole. And its effects showed larger differences in lean air fuel ratio than stoichiometric condition. Flame kernel and flame growth process of conventional spark plug and pre-ignition chamber spark plug studied by flame visualization of schlieren method.

3D Rendering of Magnetic Resonance Images using Visualization Toolkit and Microsoft.NET Framework

  • Madusanka, Nuwan;Zaben, Naim Al;Shidaifat, Alaaddin Al;Choi, Heung-Kook
    • Journal of Multimedia Information System
    • /
    • v.2 no.2
    • /
    • pp.207-214
    • /
    • 2015
  • In this paper, we proposed new software for 3D rendering of MR images in the medical domain using C# wrapper of Visualization Toolkit (VTK) and Microsoft .NET framework. Our objective in developing this software was to provide medical image segmentation, 3D rendering and visualization of hippocampus for diagnosis of Alzheimer disease patients using DICOM Images. Such three dimensional visualization can play an important role in the diagnosis of Alzheimer disease. Segmented images can be used to reconstruct the 3D volume of the hippocampus, and it can be used for the feature extraction, measure the surface area and volume of hippocampus to assist the diagnosis process. This software has been designed with interactive user interfaces and graphic kernels based on Microsoft.NET framework to get benefited from C# programming techniques, in particular to design pattern and rapid application development nature, a preliminary interactive window is functioning by invoking C#, and the kernel of VTK is simultaneously embedded in to the window, where the graphics resources are then allocated. Representation of visualization is through an interactive window so that the data could be rendered according to user's preference.

Measurement of Bubble Diameter and Rising Velocity in a Cylindrical Tank using an Optical Fiber Probe and a High Speed Visualization Technique (광섬유 탐침과 고속가시화 기법을 이용한 원형탱크 내부의 기포직경 및 상승속도 측정)

  • Kim, Gyurak;Choi, Seong Whan;Kim, Yoon Kee;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.2
    • /
    • pp.14-19
    • /
    • 2012
  • An optical fiber probe system for measuring the local void fraction in the air-water two-phase flow was developed with a 1550 nm light source. Air was injected through a nozzle placed in the center of the bottom wall of a water-filled cylindrical tank. The optical fiber probe having a diameter of $125{\mu}m$ was sufficiently thin to resolve the air-water interface of the bubbly flows. To verify the performance of the optical fiber probe, the synchronized high speed visualization study using a high speed camera was carried out. Comparison between the optical signals and the instantaneous bubble diffraction images confirms that the optical fiber probe is very accurate to measure the void fraction in two-phase flows. The estimated bubble diameter and the rising velocity by the optical fiber probe have 1% and 5% of accuracy, respectively.

Effective visualization methods for a manufacturing big data system (제조 빅데이터 시스템을 위한 효과적인 시각화 기법)

  • Yoo, Kwan-Hee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1301-1311
    • /
    • 2017
  • Manufacturing big data systems have supported decision making that can improve preemptive manufacturing activities through collection, storage, management, and predictive analysis of related 4M data in pre-manufacturing processes. Effective visualization of data is crucial for efficient management and operation of data in these systems. This paper presents visualization techniques that can be used to effectively show data collection, analysis, and prediction results in the manufacturing big data systems. Through the visualization technique presented in this paper, we have confirmed that it was not only easy to identify the problems that occurred at the manufacturing site, but also it was very useful to reply to these problems.