• Title/Summary/Keyword: Visual signal

Search Result 549, Processing Time 0.029 seconds

Effect of Motor Cues and Secondary Task Complexity on Driving Performance and Task Switching While Driving (운전 중 IVIS 조작 상황에서 Motor Cue와 과제의 난이도가 과제 전환과 운전 주행에 미치는 영향)

  • Ryoo, Eunhyun;Han, Kwanghee
    • Science of Emotion and Sensibility
    • /
    • v.21 no.2
    • /
    • pp.29-42
    • /
    • 2018
  • As information technology is more actively incorporated into automobiles, the role of IVIS (In-Vehicle Infotainment System) is becoming increasingly important for providing convenience and entertainment for drivers. However, using the infotainment systems while driving requires task switching and attending to two visual resources simultaneously. We simulated a setting where participants have to drive while interacting with the infotainment system and examined how task difficulty and motor cues impact driver task-switching and driving performance, specifically whether the effects of motor cues differ depending on task difficulty. For the infotainment display, we used two types of number array depending on the congruency between the digit repetition and the chunking unit, while task difficulty was manipulated by the size of the touch-keys. Participants were instructed to dial two numbers on the screen while we recorded the dialing time, lateral position, inter-key press intervals, and steering wheel control. We found that dialing time and lateral position were affected by task difficulty, while the type of number array had no effect. However, the inter-key press intervals between chunked numbers and steering wheel movement both increased when participants had to use an incongruent number array, which indicates that, if number digits are repeated, chunking is ignored by the drivers. Our findings indicate that, in a dual-task condition, motor cues offset the effect of chunking and can effectively signal the timing for task switching.

Raising Visual Experience of Soccer Video for Mobile Viewers (이동형 단말기 사용자를 위한 축구경기 비디오의 시청경험 향상 방법)

  • Ahn, Il-Koo;Ko, Jae-Seung;Kim, Won-Jun;Kim, Chang-Ick
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.3
    • /
    • pp.165-178
    • /
    • 2007
  • The recent progress in multimedia signal processing and transmission technologies has contributed to the extensive use of multimedia devices to watch sports games with small LCD panel. However, the most of video sequences are captured for normal viewing on standard TV or HDTV, for cost reasons, merely resized and delivered without additional editing. This may give the small-display-viewers uncomfortable experiences in understanding what is happening in a scene. For instance, in a soccer video sequence taken by a long-shot camera techniques, the tiny objects (e.g., soccer ball and players) may not be clearly viewed on the small LCD panel. Moreover, it is also difficult to recognize the contents of the scorebox which contains the elapsed time and scores. This renuires intelligent display technique to provide small-display-viewers with better experience. To this end, one of the key technologies is to determine region of interest (ROI) and display the magnified ROI on the screen, where ROI is a part of the scene that viewers pay more attention to than other regions. Examples include a region surrounding a ball in long-shot and a scorebox located in the comer of each frame. In this paper, we propose a scheme for raising viewing experiences of multimedia mobile device users. Instead of taking generic approaches utilizing visually salient features for extraction of ROI in a scene, we take domain-specific approach to exploit unique attributes of the soccer video. The proposed scheme consists of two modules: ROI determination and scorebox extraction. The experimental results show that the proposed scheme offers useful tools for intelligent video display on multimedia mobile devices.

A Study about the Users's Preferred Playing Speeds on Categorized Video Content using WSOLA method (WSOLA를 이용한 동영상 미세배속 재생 서비스에 대한 콘텐츠별 배속 선호도 분석 연구)

  • Kim, I-Gil
    • Journal of Digital Contents Society
    • /
    • v.16 no.2
    • /
    • pp.291-298
    • /
    • 2015
  • In a fast-paced information technology environment, consumption of video content is changing from one-way television viewing to VOD (Video on Demand) playing anywhere, anytime, on any device. This video-watching trend gives additional importance to videos with fine-speed-control, in addition to the strength of the digital video signal. Currently, many video players provide a fine-speed-control function which can speed up the video to skip a boring part, or slow it down to focus on an exciting scene. The audio information is just as important as the visual information for understanding the content of the speed-controlled video. Thus, a number of algorithms for fine-speed-control video-playing technologies have been proposed to solve the pitch distortion in the audio-processing area. In this study, well-known techniques for prosodic modification of speech signals, WSOLA (Waveform-Similarity-Based Overlap-Add), have been applied to analyze users' needs for fine-speed-control video playing. By surveying the users' preferred speeds on categorized video content and analyzing the results, this paper proposes that various fine-speed adjustments are needed to accommodate users' preferred video consumption.

Bacteriorhodopsin/Flavin Complex LB Films-Based Artificial Photoreceptor for Color Recognition (Bacteriorhodopsin과 flavin 복합 LB막을 이용한 색채인식기능의 인공감광소자)

  • Choi, Hyun-Goo;Jung, Woo-Chul;Min, Jun-Hong;Lee, Won-Hong;Choi, Jeong-Woo
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.643-650
    • /
    • 1999
  • An artificial photoreceptor composed of bacteriorhodopsin(bR)/flavin complex Langmuir-Blodgett(LB) films was developed by mimicking the human visual system. bR and flavin molecules were deposited onto solid substrate by LB technique, and the deposition of two molecules was proved by UV/VIS absorption spectroscopy and atomic force microscopy(AFM). Based on AFM images and photocurrent generation from the LB films, the optimal conditions for device fabrication were determined. With a series of light illuminations, the generated photocurrent could be detected, and the response characteristics of two molecules could be clearly distinguished from each other. According to the obtained signal shapes, three distinctive regions could be found in the obtained action spectrum. Using a correlation between the photocurrent generation and the wavelength of the input light, it was possible to organize the basic rules to interpret the wavelength of the input light. It is concluded that the proposed artificial photoreceptor would e applicable to the bioelectronic device for color recognition.

  • PDF

Quantitative Analysis of the Facial Nerve Using Contrast-Enhanced Three Dimensional FLAIR-VISTA Imaging in Pediatric Bell's Palsy

  • Seo, Jin Hee;You, Sun Kyoung;Lee, In Ho;Lee, Jeong Eun;Lee, So Mi;Cho, Hyun-Hae
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.3
    • /
    • pp.162-167
    • /
    • 2015
  • Purpose: To evaluate the usefulness of quantitative analysis of the facial nerve using contrast-enhanced three-dimensional (CE 3D) fluid-attenuated inversion recovery-volume isotopic turbo spin echo acquisition (FLAIR-VISTA) for the diagnosis of Bell's palsy in pediatric patients. Materials and Methods: Twelve patients (24 nerves) with unilateral acute facial nerve palsy underwent MRI from March 2014 through March 2015. The unaffected sides were included as a control group. First, for quantitative analysis, the signal intensity (SI) and relative SI (RSI) for canalicular, labyrinthine, geniculate ganglion, tympanic, and mastoid segments of the facial nerve on CE 3D FLAIR images were measured using regions of interest (ROI). Second, CE 3D FLAIR and CE T1-SE images were analyzed to compare their diagnostic performance by visual assessment (VA). The sensitivity, specificity, and accuracy of RSI measurement and VA were compared. Results: The absolute SI of canalicular and mastoid segments and the sum of the five mean SI (total SI) were higher in the palsy group than in the control group, but with no significant differences. The RSI of the canalicular segment and the total SI were significantly correlated with the symptomatic side (P = 0.028 and 0.015). In 11/12 (91.6%) patients, the RSI of total SI resulted in accurate detection of the affected side. The sensitivity, specificity, and accuracy for detecting Bell's palsy were higher with RSI measurement than with VA of CE 3D FLAIR images, while those with VA of CE T1-SE images were higher than those with VA of CE 3D FLAIR images. Conclusion: Quantitative analysis of the facial nerve using CE 3D FLAIR imaging can be useful for increasing the diagnostic performance in children with Bell's palsy when difficult to diagnose using VA alone. With regard to VA, the diagnostic performance of CE T1-SE imaging is superior to that of CE 3D FLAIR imaging in children. Further studies including larger populations are necessary.

Improvement of Fat Suppression and Artifact Reduction Using IDEAL Technique in Head and Neck MRI at 3T

  • Hong, Jin Ho;Lee, Ha Young;Kang, Young Hye;Lim, Myung Kwan;Kim, Yeo Ju;Cho, Soon Gu;Kim, Mi Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.1
    • /
    • pp.44-52
    • /
    • 2016
  • Purpose: To quantitatively and qualitatively compare fat-suppressed MRI quality using iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) with that using frequency selective fat-suppression (FSFS) T2- and postcontrast T1-weighted fast spin-echo images of the head and neck at 3T. Materials and Methods: The study was approved by our Institutional Review Board. Prospective MR image analysis was performed in 36 individuals at a single-center. Axial fat suppressed T2- and postcontrast T1-weighted images with IDEAL and FSFS were compared. Visual assessment was performed by two independent readers with respect to; 1) metallic artifacts around oral cavity, 2) susceptibility artifacts around upper airway, paranasal sinus, and head-neck junction, 3) homogeneity of fat suppression, 4) image sharpness, 5) tissue contrast of pathologies and lymph nodes. The signal-to-noise ratios (SNR) for each image sequence were assessed. Results: Both IDEAL fat suppressed T2- and T1-weighted images significantly reduced artifacts around airway, paranasal sinus, and head-neck junction, and significantly improved homogeneous fat suppression in compared to those using FSFS (P < 0.05 for all). IDEAL significantly decreased artifacts around oral cavity on T2-weighted images (P < 0.05, respectively) and improved sharpness, lesion-to-tissue, and lymph node-to-tissue contrast on T1-weighted images (P < 0.05 for all). The mean SNRs were significantly improved on both T1- and T2-weighted IDEAL images (P < 0.05 for all). Conclusion: IDEAL technique improves image quality in the head and neck by reducing artifacts with homogeneous fat suppression, while maintaining a high SNR.

Waveform Sorting of Rabbit Retinal Ganglion Cell Activity Recorded with Multielectrode Array (다채널전극으로 기록한 토끼 망막신경절세포의 활동전위 파형 구분)

  • Jin Gye Hwan;Lee Tae Soo;Goo Yang Sook
    • Progress in Medical Physics
    • /
    • v.16 no.3
    • /
    • pp.148-154
    • /
    • 2005
  • Since the output of retina for visual stimulus is carried by neurons of very diverse functional properties, it is not adequate to use conventional single electrode for recording the retinal action potential. For this purpose, we used newly developed multichannel recording system for monitoring the simultaneous electrical activities of many neurons in a functioning piece of retina. Retinal action potentials are recorded with an extra-cellular planar array of 60 microelectrodes. In studying the collective activity of the ganglion cell population it is essential to recognize basic functional distinctions between individual neurons. Therefore, it is necessary to detect and to classify the action potential of each ganglion cell out of mixed signal. We programmed M-files with MATLAB for this sorting process. This processing is mandatory for further analysis, e.g. poststimulus time histogram (PSTH), auto-correlogram, and cross-correlogram. We established MATLAB based protocol for waveform classification and verified that this approach was effective as an initial spike sorting method.

  • PDF

Design and Fabrication of 32x32 Foveated CMOS Retina Chip for Edge Detection with Local-Light Adaptation (국소 광적응 기능을 가지는 윤곽검출용 32x32 방사형 CMOS 시각칩의 설계 및 제조)

  • Park, Dae-Sik;Park, Jong-Ho;Kim, Kyung-Moon;Lee, Soo-Kyung;Kim, Hyun-Soo;Kim, Jung-Hwan;Lee, Min-Ho;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.84-92
    • /
    • 2002
  • A $32{\times}32$ pixels foveated (linear-polar) structure retina chip with the function of local-light adaptation for edge detection has been designed and fabricated using CMOS technology. Human retina can detect a wide range of light intensity. In this study, we use the biologically-inspired visual signal processing mechanism that consists of photoreceptors, horizontal cells, and bipolar cells in order to implement the function of edge detection in the retina chip. For a local-light adaptive function, the size of receptive field is changed locally according to the input light intensity. The spatial distribution of sensing pixels in the foveated retina chip has the advantages of selective reduction of image data and good resolution in central part to carry out the elaborate image processing with still enough resolution in the outer parts. The designed chip has been fabricated using standard $0.6\;{\mu}m$ double-poly triple-metal CMOS technology and optimized using HSPICE simulator.

Evaluation for Optimal HUD Location on a Train Using EEG (뇌파를 이용한 열차 최적의 HUD위치 평가)

  • Wang, Chang-Won;Kim, Yong-Kyu;Min, Se-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.985-993
    • /
    • 2014
  • This paper suggested a new evaluation method for optimal HUD position through a correlation based on between biological signal as and statistical analysis which using (Electroencephalogram, EEG) and ANOVA. This experiment was conducted two kinds of method to evaluate the optimal HUD position. At first, visual stimulus suggested from six different positions(the top and the bottom of the left, the top and the bottom of the center and the top and the bottom of the right on the screen) in laboratory and an object image was shown for 30 seconds in a screen which has $235{\times}197cm2$ size. And second, HUD image was configured from three different positions and an object image was shown for 30 seconds in a screen. EEG, which used ${\alpha}$-wave and ${\beta}$-wave for evaluate an emotional stability, were measured from Fp1, Fp2, F7 and F8 channel based on ten to twenty electrode system. From the result in laboratory, F7 ${\beta}$-wave was shown statistically significant to significance probability of 0.006 and between ${\alpha}$-wave and ${\beta}$-wave were showed a negative correlation(r=-0.190). Also, Both the top of left and the bottom of center were showed lower ${\beta}$-wave than the bottom of right. From the result in railway simulator, Fp1 ${\beta}$-wave was appeared statistically significant as significance probability of 0.033 and it was showed lower ${\beta}$-wave than center. The outcome of this study will be helpful about evaluation of optimal HUD position through correlation between alpha wave and beta wave.

Feasibility of Optoelectronic Neural Stimulation Shown in Sciatic Nerve of Rats (흰쥐의 좌골 신경 자극을 통한 광전 자극의 가능성에 대한 연구)

  • Kim Eui tae;Oh Seung jae;Baac Hyoung won;Kim Sung june
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.611-615
    • /
    • 2004
  • A neural prostheses can be designed to permit stimulation of specific sites in the nervous system to restore their functions, lost due to disease or trauma. This study focuses on the feasibility of optoelecronic stimulation into nervous system. Optoelectronic stimulation supplies, power and signal into the implanted optical detector inside the body by optics. It can be effective strategy especially on the retinal prosthesis, because it enables the non-invasive connection between the external source and internal detector through natural optical window 'eye'. Therefore, we designed an effective neural stimulating setup by optically based stimulation. Stimulating on the sciatic nerve of a rat with proper depth probe through optical stimulation needs higher ratio of current spreading through the neural surface, because of high impedance of neural interface. To increase the insertion current spreading into the neuron, we used a parallel low resistance compared to load resistance organic interface and calculated the optimized outer parallel resistance for maximum insertion current with the assumption of limited current by photodiode. Optimized outer parallel resistance was at a range of 500Ω-700Ω and a current was at a level between 580uA and 650uA. Stimulating current efficiency from initial photodiode induced current was between 47.5 and 59.7%. Various amplitude and frequency of the optical stimulation on the sciatic nerve showed the reliable visual tremble, and the action potential was also recorded near the stimulating area. These result demonstrate that optoelectronic stimulation with no bias can be applied to the retinal prosthesis and other neuroprosthetic area.