• Title/Summary/Keyword: Visibility impairment

Search Result 33, Processing Time 0.041 seconds

The Analyses of Causes of Visibility Impairment in Pusan (부산지역 시정악화의 원인 분석)

  • Kim Yoo-Keun;Moon Yun-Seob;Bae Joo-Hyun;Kwak Jin
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.639-643
    • /
    • 1999
  • After analyzing the correlation between air pollution and visibility, TSP and $NO_2$ is responsible for poor visibility in Pusan. After analyzing the correlation between meteorological factors and visibility, general pattern of humidity has clear negative correlation. The variation of wind speed has a positive correlation. In order to investigate the cause of poor visibility in Pusan area, the Andersen sampler and PM-2.5 are used to collect and analyze aerosol. This study was carried out to monitor the visibility using Forward scattering meter and to find out the characteristics and the cause of good visibility case and poor visibility case by measuring and analyzing a variety of parameters, such as particle size distributions, chemical compositions, and meteorological conditions in Pusan. According to the analysis of intensive sampling, $NO_3^-,NH_4^+$ ion concentration increased together with the mass concentration around $0.5\~2.5{\mu}m$ approximately during the case of poor visibility. $NH_4NO_3,\;NH_4Cl,\;and\;NaCl$ were thought to be the major components of fine particles.

  • PDF

Opto-Chemical Characteristics of Visibility Impairment Using Semi-Continuous Aerosol Monitoring in an Urban Area during Summertime (에어로졸의 준실시간 관측에 의한 여름철 도시지역 시정 감쇄 현상의 광ㆍ화학적인 특성 분석)

  • 김경원;김영준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.647-661
    • /
    • 2003
  • For continuous monitoring of atmospheric visibility in the city of Kwanaju, Korea, a transmissometer system consisting of a transmitter and a receiver was installed at a distance of 1.91 km across the downtown Kwanaju. At the transmitter site an integrating nephelometer and an aethalometer were also installed to measure the scattering and absorption coefficients of the atmosphere, respectively. At the receiver site. an URG PM$_{2.5}$ cyclone sampler and an URG-VAPS (Versatile Air Pollutant Sampler) with three filter packs and two denuders were used to collect both PM$_{2.5}$ and PM$_{10}$ samples at a 2-hour or 12-hour sampling interval for aerosol chemical analysis. Sulfate, organic mass by carbon (OMC), nitrate, elemental carbon (EC) components of fine aerosol were the major contributors to visibility impairment. Diurnal variation of visibility during best-case days showed rapid improvement in the morning hours, while it was delayed until afternoon during the worst-case days. Aerosol mass concentration of each aerosol component for the worst-case was calculated to be 11.2 times larger than the best-case for (NH$_4$)$_2$SO$_4$(NHSO), 19.0 times for NH$_4$NO$_3$ (NHNO), 2.2 times for OMC, respectively. Also result shows that elemental carbon and fine soil (FS) were 3.7 and 2.2 times more than those of best-case. respectively- Sum of total contributions of wet NHSO and NHNO to light extinction was calculated to be 301 Mm$^{-1}$ for the worst-case. However, sum of contributions by dry NHSO and NHNO was calculated to be 123 Mm$^{-1}$ for the best case. Mass extinction efficiencies of fine and coarse particles were calculated to be 5.8$\pm$0.3 $m^2$/g and 1.8$\pm$0.1 $m^2$/g, respectively.ely.

Measurement and Analysis of Visibility lmpairment during June, 1994 in Seoul (1994년 6월 서울지역 시정장애의 측정 및 분석)

  • 백남준;이종훈;김용표;문길주
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.407-419
    • /
    • 1996
  • Characteristics of visual air quality in Seoul have been investigated between June 13 and 21, 1994. Optical properties (extinction coefficient and particle scattering coefficient), meteorological parameters (relative humidity, temperature, wind speed, wind direction, and cloud cover), particle characteristics (mass size distribution, components) were measured and analyzed. During measurement periods, northwest wind with less than 2m/sec of wind speed deteriorates visibility. Effects of relative humidity are though to be not a direct factor which influence to visibility through the size change due to hygroscopic species in aerosol. During the smoggy period both the aerosol mass concentration and fine particle fraction of the size distribution are increased compared to the clear period. Sulfate, organic carbon, and elemental carbon in aerosol are the major species in determining the occurrence and severity of a smog in Seoul.

  • PDF

Seasonal trends in Visibility Impairment in the Urban Atmosphere on Kwangju (광주시 도심지역 시정감쇄현상의 계절적 특성)

  • 김경원;오승진;이권호;김영준;김문옥
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.04a
    • /
    • pp.80-81
    • /
    • 2000
  • 인위적인 에어로졸의 배출은 현대 산업발전과 급속한 도시화로 인해 가중되었으며, 인체 위해성이 높을 뿐만 아니라, 도시지역의 시정감쇄에도 크게 기여한다. 우리 나라에서 시정(visibility)에 대한 연구가 시작된 것은 지난 1980년 후반이었으며, 최근에 이르러 광학적인 연구가 함께 병행됨으로써 보다 과학적이며 체계적인 연구 성과를 얻고 있다. 시정감쇄 현상은 대기오염을 가시적으로 확인할 수 있는 지표중 하나로서 대기질의 광화학적 및 기상학적 변화에 따라 크게 영향을 받는다. (중략)

  • PDF

The Relationship of Particulate Matter and Visibility Under Different Meteorological Conditions in Seoul, South Korea (서울의 기상 조건에 따른 미세먼지와 시정의 상관성)

  • Kim, Minseok;Lee, Seoyoung;Cho, Yeseul;Koo, Ja-Ho;Yum, Seong Soo;Kim, Jhoon
    • Atmosphere
    • /
    • v.30 no.4
    • /
    • pp.391-404
    • /
    • 2020
  • To understand the characteristics of the relationship between visibility and particulate matter (PM) in different meteorological conditions, we investigated the contributions of PM and relative humidity (RH) to visibility in Seoul, South Korea. For the period from 2001 to 2018, both PM and RH show descending trends, resulting in a visibility increase. PM has little impact on the hourly variation of visibility, which could be explained more by the RH variability. Meanwhile, the daily change of PM accounts for daily visibility variation. For the monthly variation of visibility, both PM and RH showed similar influence. The correlation coefficients of PM10, PM2.5, and RH with visibility was -0.486, -0.644, and -0.556, respectively, which became higher during the high PM seasons of spring and winter. The correlation coefficient between PM2.5 and visibility was -0.454 for RH higher than 80%, and -0.780 for RH between 40% and 60%. From 2017 to 2018, there were 10 cases of extreme visibility impairment, among which five cases were incurred by high PM pollution, and two cases were by high humidity. Further analysis with PM chemical composition measurements is required to better understand the characteristics of visibility in Seoul.

Physico-Chemical Characteristics of Visibility Impairment by Airborne Pollen (공중화분에 의한 시정장애 현상의 물리적 및 화학적 특성 규명)

  • Kim, Kyung-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.863-875
    • /
    • 2006
  • Intensive visibility monitoring was conducted to investigate physical and chemical characteristics of visibility impairment by airborne pollen. Light attenuation coefficients were optically measured by a transmissometer, a nephelometer, and an aethalometer. Elemental, ionic, and carbonaceous species were chemically analyzed on the filters collected by $PM_{2.5}$ and $PM_{10}$ samplers. Aerosol size distribution was analyzed using a cascade impactor during airborne pollen period. Airborne pollen count was calculated using a scanning electron microscope. Airborne pollen was emitted into the atmosphere in springtime and funker degraded visibility through its scattering and absorbing the light. Average light extinction coefficient was measured to be $211{\pm}36Mm^{-1}$ when airborne pollen was not observed. But it increased to $459{\pm}267Mm^{-1}$ during the airborne pollen period due to increase of average $PM_{2.5}$ and $PM_{10}$ mass concentration and relative humidity and airborne pollen count concentration for $PM_{10}$, which were measured to be $46.5{\pm}29.1{\mu}g\;m^{-3},\;97.0{\pm}41.7{\mu}g\;m^{-3},\;54.1{\pm}11.6%$, and $68.2{\pm}89.7m^{-3}$, respectively. Average light extinction efficiencies for $PM_{2.5}$ and $PM_{10}$ were calculated to be $5.9{\pm}0.9$ and $4.5{\pm}0.8m^2 g^{-1}$ during the airborne pollen period. Light extinction efficiency for $PM_{10}$ increased further than that for $PM_{2.5}$. The average light extinction budget by airborne pollen was estimated to be about 24% out of the average measured light extinction coefficient during the airborne pollen period.