• Title/Summary/Keyword: Viscous Interaction

Search Result 179, Processing Time 0.019 seconds

Hypersonic Viscous Interaction of Wedge Flows (극초음속 쐐기 유동의 Viscous Interaction)

  • Kim K. H.;Rho O. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.40-45
    • /
    • 1996
  • This paper discribes the viscous interaction of Hypersonic Wedge Flows using Roe FDS and AUSM+. For this purpose we developed the frozen and the equilibrium code and numerically simulated the viscous interaction by changing the surface temperature and the mach number. We used curve fitting data in NASA Reference Publication 1181, 1260 to calculate equilibrium properties. We compare the equilibrium flow with the frozen flow. We conclude that the mach number and the surface temperature are significant parameters, as the surface temperature and the mach number increase the viscous interaction becomes stronger, and we must consider high-temperature effects in hypersonic flow

  • PDF

Seismic response of adjacent buildings interconnected by viscous dampers considering soil-structure interaction

  • Yavuz S. Hatipoglu;Oguz A. Duzgun
    • Earthquakes and Structures
    • /
    • v.24 no.3
    • /
    • pp.165-181
    • /
    • 2023
  • The effectiveness of fluid viscous dampers (FVDs) on dynamic response mitigation of coupled two adjacent structures was investigated, considering soil-structure interaction (SSI) effects under earthquake excitation. A numerical procedure was employed to evaluate system response. The finite elements were used for the numerical treatment of the adjacent buildings and soil region. Viscous boundary conditions were used as special non-reflecting boundaries on the edges of finite soil region. According to the results, the FVDs were found to be very effective for dynamic response mitigation of the adjacent buildings, even if considering the soil medium. The results showed that the most affecting parameter on the system response was found to be soil type. It was also concluded that when adjacent structures coupled by FVDs, the maximum values of the roof displacements, the base shear forces, and the base bending moments could decrease up to around 50%. Changing in lateral stiffness of the one building has minor effects on the effectiveness of viscous dampers.

Seismic analysis of 3-D two adjacent buildings connected by viscous dampers with effect of underneath different soil kinds

  • Farghaly, Ahmed Abdelraheem
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1293-1309
    • /
    • 2015
  • 3D two adjacent buildings with different heights founded in different kinds of soil connected with viscous dampers groups, with especial arrangement in plane, were investigated. Soil structure interaction for three different kinds of soil (stiff, medium and soft) were modeled as 3D Winkler model to give the realistic behavior of adjacent buildings connected with viscous dampers under various earthquake excitations taking in the account the effect of different kinds of soil beneath the buildings, using SAP2000n to model the whole system. A range of soil properties and soil damping characteristics are chosen which gives broad picture of connected structures system behavior resulted from the influence soil-structure interaction. Its conclusion that the response of connected structures system founded on soft soil are more critical than those founded on stiff soil. The behavior of connected structures is different from those with fixed base bigger by nearly 20%, and the efficiency of viscous dampers connecting the two adjacent buildings is reduced by nearly 25% less than those founded on stiff soil.

Bow Wave Breaking and Viscous Interaction of Stern Wave

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.448-455
    • /
    • 2000
  • The bow wave breaking and the viscous interaction of stern wave are studied by simulating the free-surface flows. The Navier-Stokes equation is solved by a finite difference method in which the body-fitted coordinate system, the wall function and the triple-grid system are invoked. After validation, the calculations are extended to turbulent flows. The wave elevation at the Reynolds number of $10^4$ is much less than that at $10^6$ although the Froude number is the same. The numerical appearance of the sub-breaking waves is qualitatively supported by experimental observation. They are also applied to study the stern flow of S-103 for which extensive experimental data are available. Although the interaction between separation and the stern wave generation are not yet clear, the effects of the bow wave on the development of the boundary layer flows are concluded to be significant.

  • PDF

Interaction of High-Speed Compressible Viscous Flow and Structure by Adaptive Finite Element Method

  • Limtrakarn, Wiroj;Dechaumphai, Pramote
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1837-1848
    • /
    • 2004
  • Interaction behaviors of high-speed compressible viscous flow and thermal-structural response of structure are presented. The compressible viscous laminar flow behavior based on the Navier-Stokes equations is predicted by using an adaptive cell-centered finite-element method. The energy equation and the quasi-static structural equations for aerodynamically heated structures are solved by applying the Galerkin finite-element method. The finite-element formulation and computational procedure are described. The performance of the combined method is evaluated by solving Mach 4 flow past a flat plate and comparing with the solution from the finite different method. To demonstrate their interaction, the high-speed flow, structural heat transfer, and deformation phenomena are studied by applying the present method to Mach 10 flow past a flat plate.

Numerical Simulation of Colliding Behaviors of Ice Sheet Considering the Viscous Material Properties (점성변형 특성을 고려한 빙판의 충돌거동에 대한 수치해석)

  • 노인식;신병천
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.162-172
    • /
    • 1993
  • In the present paper, the overall state of the arts of ice mechanics which is the most typical research topic of the artic engineering field was studied. And also, ice loads genrated by ice-structure interaction were estimated using numerical approach. The effects of viscous property of ice sheets to the ice load were investigated. The time dependent deformation behaviors of ice was modeled by visco-plastic problem using the finite element formalism. Constitutive model representing the material properties of ice was idealized by comblned rheological model with Maxwell and Voigt models. Numerical calculations for the bending and crushing behavior of ice sheet which are the most typical interaction modes between ice sheets and structures were carried out. The time dependent viscous behaviors of ice sheets interaction forces acting on structures were analyzed and the results were studied in detail.

  • PDF

Study of the Effects of Wakes on Cascade Flow (후류가 익렬유동에 미치는 영향에 대한 실험적 연구)

  • Kim, Hyung-Joo;Joo, Won-Gu;Cho, Kang-Rae
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.309-314
    • /
    • 1999
  • This paper is concerned with the viscous interaction between rotor and stator The viscous interaction is caused by wakes from upstream blades. The cascade was composed with five blades and cylinders were placed to make wakes and their location was about 50 percent of blade chord upstream. The location of cylinders were varied in the cascade axis with 0, 20, 40, 60 and 80 percent of pitch length. The velocity distribution in the cascade passage were measured using single slanted hot-wire and the ones in the boundary layer using boundary probe. As a result, wakes decay more rapidly at suction surface and more slowly at pressure surface. And the measurement of momentum thickness of cascade shows that the momentum thickness is larger near the blade surface. From measurement of blade boundary layer, turbulent intensity is also larger near the blade surface because wakes collide the boundary layer And wakes make boundary layer thickness smaller and delay flow separation.

  • PDF

Practical Numerical Model for Nonlinear Analyses of Wave Propagation and Soil-Structure Interaction in Infinite Poroelastic Media (무한 다공성 매질에서의 비선형 파전파 해석과 지반-구조물 상호작용 해석을 위한 실용적 수치 모형)

  • Lee, Jin Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.379-390
    • /
    • 2018
  • In this study, a numerical approach based on mid-point integrated finite elements and a viscous boundary is proposed for time-domain wave-propagation analyses in infinite poroelastic media. The proposed approach is accurate, efficient, and easy to implement in time-domain analyses. In the approach, an infinite domain is truncated at some distance. The truncated domain is represented by mid-point integrated finite elements with real element-lengths and a viscous boundary is attached to the end of the domain. Given that the dynamic behaviors of the proposed model can be expressed in terms of mass, damping, and stiffness matrices only, it can be implemented easily in the displacement-based finite-element formulation. No convolutional operations are required for time-domain calculations because the coefficient matrices are constant. The proposed numerical approach is applied to typical wave-propagation and soil-structure interaction problems. The model is verified to produce accurate and stable results. It is demonstrated that the numerical approach can be applied successfully to nonlinear soil-structure interaction problems.

Two-Dimensional Analysis of Unsteady Flow Through One Stage of Axial Turbine (II) (1단 축류 터빈의 비정상 내부유동특성에 관한 2차원 해석 (II))

  • Park, Jun-Young;Um, In-Sik;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1518-1526
    • /
    • 2001
  • In this paper, the mechanism of unsteady potential interaction and wake interaction in one stage axial turbine is numerically investigated at design point in two-dimensional viewpoint. The numerical technique used is the upwind scheme of Van-Leer's Flux Vector Splitting (FVS) and Cubic spline interpolation is applied on zonal interface between stator and rotor. The inviscid analysis is used to embody the influence of potential interaction only and viscous analysis is used to embody the influences of both potential interaction and wake interaction at the same time. The potential-flow disturbance from the stator into a rotor passage and the periodic blockage effect of rotor produce the unsteady pressure on the blade surface in inviscid analysis. After the wake is cut by rotor, two counterrotating votical patterns flanking the wake centerline in the passage are generated. So, these phenomena magnify the unsteady pressure in viscous analysis than that in inviscid analysis. The resulting unsteady forces on the rotor, generated by the combined interaction of the two effects by potential and wake interaction, are discussed.

A numerical parametric study on hydrofoil interaction in tandem

  • Kinaci, Omer Kemal
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.25-40
    • /
    • 2015
  • Understanding the effects of the parameters affecting the interaction of tandem hydrofoil system is a crucial subject in order to fully comprehend the aero/hydrodynamics of any vehicle moving inside a fluid. This study covers a parametric study on tandem hydrofoil interaction in both potential and viscous fluids using iterative Boundary Element Method (BEM) and RANSE. BEM allows a quick estimation of the flow around bodies and may be used for practical purposes to assess the interaction inside the fluid. The produced results are verified by conformal mapping and Finite Volume Method (FVM). RANSE is used for viscous flow conditions to assess the effects of viscosity compared to the inviscid solutions proposed by BEM. Six different parameters are investigated and they are the effects of distance, thickness, angle of attack, chord length, aspect ratio and tapered wings. A generalized 2-D code is developed implementing the iterative procedure and is adapted to generate results. Effects of free surface and cavitation are ignored. It is believed that the present work will provide insight into the parametric interference between hydrofoils inside the fluid.