• Title/Summary/Keyword: Viscosity Friction

Search Result 231, Processing Time 0.03 seconds

Analysis on the Friction Characteristics of Low Viscosity Engine Oils (저점도 엔진오일이 마찰특성에 미치는 영향에 관한 해석적 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.249-255
    • /
    • 2005
  • In this paper, the friction characteristic of engine bearings has been analyzed in terms of a friction loss power, a minimum film thickness and an oil film pressure. This analysis has been focused on the fuel economy improvement with a low viscosity engine oil such as SAE 0W-40, which is used for a friction loss reduction and increased for a Diesel fuel economy. The friction loss power, the minimum oil film thickness and oil film pressure distribution for plain bearings of a Diesel engine are analyzed using an AVL's EXCITE program with a conventional engine oils of SAE 5W-40 and 10W-40, and a low viscosity engine oil of SAE 0W-40. The computed results indicate that a viscosity of engine oils is closely related to the friction loss power and the decreased minimum film thickness in which is a key parameter of a load carrying capacity of an oil film pressure distribution. When the low viscosity engine oil is supplied to engine bearings, it does not affect to the formation of a minimum oil film thickness. But the friction loss power has been significantly affected by low viscosity engine oil at a low operating temperature of 0. Based on the FEM computed results, the low viscosity engine oil at a low temperature range will be an important factor for an improvement of the fuel economy improvement.

Friction Model for Finite Element Analysis of Sheet Metal Forming Processes (박판 성형공정 유한요소 해석용 마찰모델)

  • Keum Y.T.;Lee B.H.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.528-534
    • /
    • 2004
  • In order to find the effect of lubricant viscosity, tool geometry, forming speed, and sheet material properties on the friction in the sheet metal forming, friction tests were performed. Friction test results show that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, the friction coefficient is high. The bigger die corner radii and punch speed are, the smaller is the friction coefficient. From the experimental observation, the friction model which is the mathematical expression of friction coefficient in terms of lubricant viscosity, roughness and hardness of sheet surface, punch corner radius, and punch speed is constructed. By comparing the punch load found by FEM using the proposed friction model with that obtained from the experiment in 2-D stretch forming, the validity and accuracy of the friction model are demonstrated.

Friction Model of Sheet Metal Forming Considering Lubricant and Surface Roughness (윤활과 표면조도를 고려한 박판 성형 마찰 모델)

  • 이봉현;금영탁
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.543-550
    • /
    • 2001
  • In order to find the effect of material property and lubricant viscosity on the frictional characteristics a sheet metal friction tester was designed and tensile test, surface roughness test, and friction test were performed with several kinds of drawing oils. Test results show that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, friction coefficient is also high. Using these test results, the friction model considering lubricant viscosity and surface roughness is developed. The validity and accuracy of the friction model are shown by comparing the punch loads among FEM analysis results employing current friction model and conventional friction model respectively and experimental measurement.

  • PDF

Friction Model for Sheet Metal Forming Analysis (Part1 : Experiment) (박판성형 해석용 마찰모델 (1부 : 실험))

  • 이봉현;금영탁
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.349-354
    • /
    • 2002
  • In order to find the effect of lubricant viscosity, sheet surface roughness, tool geometry, and forming speed on the frictional characteristics in sheet metal forming, a sheet metal friction tester was designed and manufactured and friction test of various sheet were performed. Friction test results showed that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, the friction coefficient is relatively high. The result also show that as the punch radius and punch speed becomes bigger, the friction coefficient is smaller. Using experimental results, the mathematical expression between friction coefficient and lubricant viscosity, surface roughness, punch comer radius, or punch speed is also described.

Study on the Friction Model for Sheet Metal Forming (Part1:Lubrication/Surface Roughness) (박판 성형을 위한 마찰 모델에 관한 연구 (1부:윤활/표면 조도))

  • Keum Y. T.;Lee B. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.24-27
    • /
    • 2001
  • Friction between the sheet and tools is one of the important factors affecting the sheet metal forming. Therefore, the clarification of the friction is essential to improve the formability of the sheet. In order to find the effect of material property and lubricant viscosity on the frictional characteristics, tensile test, surface roughness test and friction test are performed. The results showed that friction characteristics are mainly influenced by the surface roughness and lubricant viscosity. A mathematical model of the friction is developed for calculating friction coefficient in terms of surface roughness and lubricant viscosity. The validity and accuracy of the mathematical model of the friction are verified through the experiment and FEM analysis.

  • PDF

The study on characteristics of viscosity friction coefficient for a motor (전동기 점성마찰계수 특성에 관한 연구)

  • Byun, Yeun-Sub;Mok, Jei-Kyun;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1082-1083
    • /
    • 2007
  • Electric motors are widely used from precision industry to home appliance. For the precision control of the motors, if it is possible, we need the information of the correct motor parameters. In the motor torque equation, the motor inertia moment and the viscosity friction coefficient are regarded as constant. However the viscosity friction coefficient is not constant in the real system. In this paper, we show that the viscosity friction coefficient has the nonlinear property through the real test and we present the nonlinear function for the viscosity friction coefficient.

  • PDF

Study on the Friction Characteristics of Advanced High Strength Steel Sheet (초고강도강판의 마찰특성에 관한 연구)

  • Kim, N.J.;Kim, S.H.;Jung, K.R.;Park, S.B.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.250-253
    • /
    • 2009
  • In this study, the friction test was performed to find friction characteristics of advanced high strength steel (AHSS) sheets and the multiple regression method was employed to obtain friction models. The friction coefficients associated with the lubricant viscosity, drawing speed, and blank holding pressure are measured. Differently from GA steel sheets, the effects of the lubricant viscosity and pulling speed are a little, which are explained by a theory of adhesion and wear as well as a deformation of friction surface. In addition, the effects of friction parameters are numerically represented by friction regression models.

  • PDF

Correlation between Lubrication Characteristics of Engine and Fuel Economy (엔진 윤활특성과 연비 상관성에 대한 연구)

  • Oh, JungJoon;Cha, SangYeob;Jeong, DoGon;Lee, JongJu
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.189-198
    • /
    • 2014
  • This paper presents the results of an experimental investigation of the correlation between the lubrication characteristics of an engine and its fuel economy. Improving the lubrication characteristics of the engine oil is one of the most efficient ways to improve a car's fuel economy. The methods to accomplish this include lowering the viscosity, adding a friction modifier and optimizing the shear stability index of a viscosity index improver. In addition, it is necessary to use different methods to reduce the friction to individual lubrication areas, because different lubrication regimes are used for different engine parts. The experimental investigation in this study is based on design of experiments ; this paper presents the results of a modified Sequence VID test, which is an ASTM standard test used to measure the effects of automotive engine oils on the fuel economy of passenger cars. The results demonstrate the effects of the following lubrication factors on the fuel economy : the low temperature cranking viscosity, high-temperature high shear (HTHS) viscosity, friction modifier, polymer type and shear stability index of the viscosity index improver. Moreover, this study involves an analysis of variance based on design of experiments. The test results show that the HTHS viscosity, friction modifier and shear stability index of the viscosity index improver are more effective than the other factors. Therefore, lowering the viscosity, adding a friction modifier and optimizing the shear stability index of a viscosity index improver should be considered to improve fuel economy.

Experimental Study on Frictional Characteristics of Sheet Metal Forming (박판성형 마찰특성의 실험적 연구)

  • 금영탁;이봉현;차지혜
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.54-57
    • /
    • 2002
  • In order to find the effect of lubricant viscosity, sheet surface roughness, tool geometry, and forming speed on the frictional characteristics in sheet metal forming, a sheet metal friction tester was designed and manufactured and friction tests of various sheets were performed. Friction test results showed that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extreme1y low or high, the friction coefficient is high. As punch comer radius and punch speed are bigger, the value of friction coefficient is smaller. The sensitivity of friction coefficient is mainly governed by lubricant viscosity and sheet surface roughness.

  • PDF

The influence of various factors on piston friction (피스턴마찰에 미치는 각 인자의 영향)

  • 이종태;이성열
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.45-53
    • /
    • 1983
  • There exist many kinds of frictions in internal combustion engine such as piston ring and skirt, cam and tappet, bearing friction etc. Among them, the frictions between piston ring, skirt and cylinder are particular. These frictions for motoring test are differ from that of firing test even though the temperature of cooling water and lubricating oil keep identically. The frictions for firing test are increased due to combustion pressure and products. The precise calculation of the friction is difficult. But we can assume that the friction is governed by the viscosity of lubricating oil and gas pressure of cylinder. And the viscosity of lubricating oil is dependant on gas temperature of cylinder, so the piston friction may be governed by gas pressure and temperature of cylinder. In this treatise, we propose the method of evaluating piston friction under the condition of constant engine speed, and we analyzed the behaviours and influence of factors concerned with the piston friction for output correction when the inlet pressure and temperature were varied. The main results are as follows: 1) The behaviours on the inlet conditions for the contact force of the piston rings and the viscosity of the lubricating oil concerned with piston friction are found. 2) The essential point the these behaviours is dependant on the cyclic variation following to the inlet conditions. 3) According to our analysis, It was observed that the viscosity of lubricating oil is more effective than the contact force to the piston rings.

  • PDF