• Title/Summary/Keyword: Visco-elastic model

Search Result 82, Processing Time 0.024 seconds

Stochastic vibration suppression analysis of an optimal bounded controlled sandwich beam with MR visco-elastomer core

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.21-31
    • /
    • 2017
  • To control the stochastic vibration of a vibration-sensitive instrument supported on a beam, the beam is designed as a sandwich structure with magneto-rheological visco-elastomer (MRVE) core. The MRVE has dynamic properties such as stiffness and damping adjustable by applied magnetic fields. To achieve better vibration control effectiveness, the optimal bounded parametric control for the MRVE sandwich beam with supported mass under stochastic and deterministic support motion excitations is proposed, and the stochastic and shock vibration suppression capability of the optimally controlled beam with multi-mode coupling is studied. The dynamic behavior of MRVE core is described by the visco-elastic Kelvin-Voigt model with a controllable parameter dependent on applied magnetic fields, and the parameter is considered as an active bounded control. The partial differential equations for horizontal and vertical coupling motions of the sandwich beam are obtained and converted into the multi-mode coupling vibration equations with the bounded nonlinear parametric control according to the Galerkin method. The vibration equations and corresponding performance index construct the optimal bounded parametric control problem. Then the dynamical programming equation for the control problem is derived based on the dynamical programming principle. The optimal bounded parametric control law is obtained by solving the programming equation with the bounded control constraint. The controlled vibration responses of the MRVE sandwich beam under stochastic and shock excitations are obtained by substituting the optimal bounded control into the vibration equations and solving them. The further remarkable vibration suppression capability of the optimal bounded control compared with the passive control and the influence of the control parameters on the stochastic vibration suppression effectiveness are illustrated with numerical results. The proposed optimal bounded parametric control strategy is applicable to smart visco-elastic composite structures under deterministic and stochastic excitations for improving vibration control effectiveness.

Dynamic analysis of ACTIVE MOUNT using viscoelastic-elastoplastic material model

  • Park, Taeyun;Jung, Wonuk
    • International Journal of Reliability and Applications
    • /
    • v.17 no.2
    • /
    • pp.137-147
    • /
    • 2016
  • The engine mount of a car subjected to a pre-load related to the weight of the engine, and acts to insulate the vibration coming from the engine by moving on large or small displacement depending on the driving condition of the car. The vibration insulation of the engine mount is an effect obtained by dissipating the mechanical energy into heat by the viscosity characteristic of the rubber and the microscopic behavior of the additive carbon black. Therefore, dynamic stiffness from the intrinsic properties of rubber filled with carbon black at the design stage is an important design consideration. In this paper, we introduced a hyper-elastic, visco-elastic and elasto-plastic model to predict the dynamic characteristics of rubber, and developed a fitting program to determine the material model parameters using MATLAB. The dynamic characteristics analysis of the rubber insulator of the ACTIVE MOUNT was carried out by using MSC.MARC nonlinear structural analysis software, which provides the dynamic characteristics material model. The analysis results were compared with the dynamic characteristics test results of the rubber insulator, which is one of the active mount components, and the analysis results were confirmed to be valid.

굴착 진행과정을 고려한 터널 단면의 점탄성 및 탄소성 응력해석

  • Lee, Yeon-Gyu;Jang, Hyeon-Gon;Lee, Jeong-In
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.152-165
    • /
    • 1991
  • Elasto-plastic and Visco-elastic sytress analyses were conducted for standard cross-section of subway tunnel in Seoul . Considering the procedure of excavation and reinforcement, excavated region was divided to multiple elements. And the progress of tunnel is simulated to be the removal of a series of layerd elements by means of diminishing the stiffness of the portion progressively. Another method is to be free of stress due to excavation instead of stiffness. In the analysis multiple element method was conducted with ADINA program, the stiffness removal method was adopted . For the same model, stress release method was carried out with Visco-Elastic Analysis program developed in Rock mechanics laboratory, Seoul National University(SNU-VBA) . When upper tunnel excavated, displacements in roof were same for two results, but when bottom tunnel removed completely , displacement changes of rock in the stress release method exhibited very small amount compared with stiffness removal method.

  • PDF

Development of ViscoElastoPlastic Continuum Damage (VEPCD) Model for Response Prediction of HMAs under Tensile Loading (인장하중을 받는 아스팔트 혼합물의 점탄소성 모형의 개발)

  • Underwood, B. Shane;Kim, Y. Richard;Seo, Youngguk;Lee, Kwang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.45-55
    • /
    • 2008
  • The objective of this research was to develop a VEPCD (ViscoElastoPlastic Continuum Damage) Model which is used to predict the behavior of asphalt concrete under various loading and temperature conditions. This paper presents the VEPCD model formulated in a tension mode and its validation using four hot mix asphalt (HMA) mixtures: dense-graded HMA, SBS, CR-TB, and Terpolymer. Modelling approaches consist of two components: the ViscoElastic Continuum Damage (VECD) mechanics and the ViscoPlastic (VP) theory. The VECD model was to describe the time-dependent behavior of HMA with growing damage. The irrecoverable (whether time-dependent or independent) strain has been described by the VP model. Based on the strain decomposition principle, these two models are integrated to form the VEPCD model. For validating the VEPCD model, two types of laboratory tests were performed: 1) a constant crosshead strain rate tension test, 2) a fatigue test with randomly selected load levels and frequencies.

Experimental Study on Visco-Plastic Characteristics of Silicate-Grouted Soil (물유리계 약액고결토의 점.소성특성에 관한 실험적 연구)

  • 정형식;유재일
    • Geotechnical Engineering
    • /
    • v.4 no.3
    • /
    • pp.53-62
    • /
    • 1988
  • When a ground soil is under the constant continuous stress less than the failure strength of that soil, its deformation, in some cases, will increase continuously as time goes on due to creep phenomena. Deformation of soil caused by creep behavior will appear in various types depending on the elastic, plastic, viscous properties of soil. Therefore in this study, visco-plastic characteristics of grouted soil was studied by analysing the result of uniaxial creep test on the grouted soil. As a result of this research, it was found that the rheological model of grouted soil can be decided as Vyalov model and the visco-plastic properties of grouted soil is influenced by the content of silicate in grout.

  • PDF

The effect of visco-Pasternak foundation on the free vibration behavior of exponentially graded sandwich plates with various boundary conditions

  • Fatima, Bounouara;Salem Mohammed, Aldosari;Abdelbaki, Chikh;Abdelhakim, Kaci;Abdelmoumen Anis, Bousahla;Fouad, Bourada;Abdelouahed, Tounsi;Kouider Halim, Benrahou;Hind, Albalawi;Abdeldjebbar, Tounsi
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.367-383
    • /
    • 2023
  • In this investigation, an improved integral trigonometric shear deformation theory is employed to examine the vibrational behavior of the functionally graded (FG) sandwich plates resting on visco-Pasternak foundations. The studied structure is modelled with only four unknowns' variables displacements functions. The simplicity of the developed model being in the reduced number of variables which was made with the help of the use of the indeterminate integral in the formulation. The current kinematic takes into consideration the shear deformation effect and does not require any shear correction factors as used in the first shear deformation theory. The equations of motion are determined from Hamilton's principle with including the effect of the reaction of the visco-Pasternak's foundation. A Galerkin technique is proposed to solve the differentials governing equations, which enables one to obtain the semi-analytical solutions of natural frequencies for various clamped and simply supported FG sandwich plates resting on visco-Pasternak foundations. The validity of proposed model is checked with others solutions found in the literature. Parametric studies are performed to illustrate the impact of various parameters as plate dimension, layer thickness ratio, inhomogeneity index, damping coefficient, vibrational mode and elastic foundation on the vibrational behavior of the FG sandwich plates.

Neck Formation in Drawing Processes of Fibers

  • Chung, Kwansoo;Yoon, Hyungsop;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.2 no.1
    • /
    • pp.140-143
    • /
    • 2001
  • To better understand the formation of necking in drawing processes of fibers, strain distributions during drawing processes have been analyzed. For simplicity, one-dimensional incompressible steady flow at a constant temperature was assumed and quasi-static model was used. To describe mechanical properties of solid polymers, non-linear visco-plastic material properties were assumed using the power law type hardening and rate-sensitive equation. The effects of various parameters on the neck formation were matematically analyzed. As material property parameters, strain-hardening parameter, visco-elastic coefficient and strain-rate sensitivity were considered and, for process parameters, the drawing ratio and the process length were considered. It was found that rate-insensitive materials do not reach a steady flow state and the rate-sensitivity plays a key role to have a steady flow. Also, the neck formation is mainly affected by material properties, especially for the quasi-static model. If the process length changes, the strain distribution was found to be proportionally re-distributed along the process line by the factor of the total length change.

  • PDF

Rheological Models for Simulations of Concrete Under High-Speed Load (콘크리트 재료의 동적 물성 변화를 모사하기 위한 유변학적(Rheological)모델 개발 및 평가)

  • Hwang, Young Kwang;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.769-777
    • /
    • 2015
  • In this study, the rheological models were introduced and developed to reflect rate dependent tensile behaviour of concrete. In general, mechanical properties(e.g. strength, elasticity, and fracture energy) of concrete are increased under high loading rates. The strength of concrete shows high rate dependency among its mechanical properties, and the tensile strength has higher rate dependency than the compressional strength. To simulate the rate dependency of concrete, original spring set of RBSN(Rigid-Body- Spring-Network) model was adjusted with viscous and friction units(e.g. dashpot and Coulomb friction component). Three types of models( 1) visco-elastic, 2) visco-plastic, and 3) visco-elasto- plastic damage models) are considered, and the constitutive relationships for the models are derived. For validation purpose, direct tensile test were simulated, and characteristics of the three different rheological models were compared with experimental stress-strain responses. Simulation result of the developed visco-elasto-plastic damage(VEPD) model demonstrated well describing and fitting with experimental results.

Synthesis of Earthquake Ground Motion by Combining Stochastic Line Source Model with Elastic Wave Propagation Analysis Method in a Layered Half Space (추계학적 선진원 모델과 층상반무한체에서의 탄성파 전파 해석법에 의한 지진 지반운동 합성)

  • KIM, Jae Kwan;KWON, Ki Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.97-105
    • /
    • 1996
  • A Stochastic line source model is developed to simulate the seismic wave field generated during the rupture propagation process along a fault plane of which length is much larger than its width. The fault plane is assumed to consist of randomly distributed slip zones and barriers and each slip zone is modeled as a point source. By combining the newly developed source model with wave propagation analysis method in a layered 3-D visco-elastic half space, synthetic seismograms are obtained. The calculated accelerograms due to vertical dip slip and strike slip line sources are presented.

  • PDF