• Title/Summary/Keyword: Virus morphogenesis

Search Result 13, Processing Time 0.017 seconds

The unique role of domain 2A of the hepatitis A virus precursor polypeptide P1-2A in viral morphogenesis

  • Morace, Graziella;Kusov, Yuri;Dzagurov, Georgy;Beneduce, Francesca;Gauss-Muller, Verena
    • BMB Reports
    • /
    • v.41 no.9
    • /
    • pp.678-683
    • /
    • 2008
  • The initial step during assembly of the hepatitis A virus particle is driven by domain 2A of P1-2A, which is the precursor of the structural proteins. The proteolytic removal of 2A from particulate VP1-2A by an as yet unknown host enzyme presumably terminates viral morphogenesis. Using a genetic approach, we show that a basic amino acid residue at the C-terminus of VP1 is required for efficient particle assembly and that host proteases trypsin and cathepsin L remove 2A from hepatitis A virus particles in vitro. Analyses of insertion mutants in the C-terminus of 2A reveal that this part of 2A is important for liberation of P1-2A from the polyprotein. The data provide the first evidence that the VP1/2A junction is involved in both viral particle assembly and maturation and, therefore, seems to coordinate the first and last steps in viral morphogenesis.

Poxvirus under the eyes of electron microscope

  • Jaekyung Hyun
    • Applied Microscopy
    • /
    • v.52
    • /
    • pp.11.1-11.9
    • /
    • 2022
  • Zoonotic poxvirus infections pose significant threat to human health as we have witnessed recent spread of monkeypox. Therefore, insights into molecular mechanism behind poxvirus replication cycle are needed for the development of efficient antiviral strategies. Virion assembly is one of the key steps that determine the fate of replicating poxviruses. However, in-depth understanding of poxvirus assembly is challenging due to the complex nature of multi-step morphogenesis and heterogeneous virion structures. Despite these challenges, decades of research have revealed virion morphologies at various maturation stages, critical protein components and interactions with host cell compartments. Transmission electron microscopy has been employed as an indispensable tool for the examination of virion morphology, and more recently for the structure determination of protein complexes. In this review, we describe some of the major findings in poxvirus morphogenesis and the contributions of continuously advancing electron microscopy techniques.

Interaction of Hepatitis C Virus Core Protein with Janus Kinase Is Required for Efficient Production of Infectious Viruses

  • Lee, Choongho
    • Biomolecules & Therapeutics
    • /
    • v.21 no.2
    • /
    • pp.97-106
    • /
    • 2013
  • Chronic hepatitis C virus (HCV) infection is responsible for the development of liver cirrhosis and hepatocellular carcinoma. HCV core protein plays not only a structural role in the virion morphogenesis by encapsidating a virus RNA genome but also a non-structural role in HCV-induced pathogenesis by blocking innate immunity. Especially, it has been shown to regulate JAK-STAT signaling pathway through its direct interaction with Janus kinase (JAK) via its proline-rich JAK-binding motif ($^{79}{\underline{P}}GY{\underline{P}}WP^{84}$). However, little is known about the physiological significance of this HCV core-JAK association in the context of the virus life cycle. In order to gain an insight, a mutant HCV genome (J6/JFH1-79A82A) was constructed to express the mutant core with a defective JAK-binding motif ($^{79}{\underline{A}}GY{\underline{A}}WP^{84}$) using an HCV genotype 2a infectious clone (J6/JFH1). When this mutant HCV genome was introduced into hepatocarcinoma cells, it was found to be severely impaired in its ability to produce infectious viruses in spite of its robust RNA genome replication. Taken together, all these results suggest an essential requirement of HCV core-JAK protein interaction for efficient production of infectious viruses and the potential of using core-JAK blockers as a new anti-HCV therapy.

Hepatitis C Virus Core Protein Is Efficiently Released into the Culture Medium in Insect Cells

  • Choi, Soo-Ho;Kim, So-Yeon;Park, Kyu-Jin;Kim, Yeon-Joo;Hwang, Soon-Bong
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.735-740
    • /
    • 2004
  • Hepatitis C virus (HCV) is a causal agent of the chronic liver infection. To understand HCV morphogenesis, we studied the assembly of HCV structural proteins in insect cells. We constructed recombinant baculovirus expression vectors consisting of either HCV core alone, core-E1, or core-E1-E2. These structural proteins were expressed in insect cells and were examined to assemble into particles. Neither core-E1 nor core-E1-E2 was capable of assembling into virus-like particles (VLPs). It was surprising that the core protein alone was assembled into core-like particles. These particles were released into the culture medium as early as 2 days after infection. In our system, HCV structural proteins including envelope proteins did not assemble into VLPs. Instead, the core protein itself has the intrinsic capacity to assemble into amorphous core-like particles. Furthermore, released core particles were associated with HCV RNA, indicating that core proteins were assembled into nucleocapsids. These results suggest that HCV may utilize a unique core release mechanism to evade the hosts defense mechanism, thus contributing to the persistence of HCV infection.

Electron Microscopic Observations on BHK-21 Cells Infected with Herpes Simplex Type 2 Virus (Herpes Simplex 2형 바이러스의 BHK-21 세포내에서의 전자현미경적 관찰)

  • Ko, Kwang-Kjune;Lee, Yun-Tai;Lee, Chong-Hoon
    • The Journal of the Korean Society for Microbiology
    • /
    • v.16 no.1
    • /
    • pp.71-82
    • /
    • 1981
  • An electron microscopic study was carried out on the morphogenesis of herpes simplex type 2 virus in BHK-21 cells BHK-21 cells was found susceptible to infection and replication of herpes simplex type 2 virus cytopathic effects of the herpes type appeared at approximately 1 day postinoculation. Foci consisting of rounded refractile cells and syncytia were observed. Projection of the nuclear membrane in the infected cells was also seen, Several infected cells showed a track-shaped structure which apparently consisted of multiple layered membranes of the nucleus.

  • PDF

Immunohistochemistry for detection of Aujeszky's disease virus antigens: Protein A-gold labeling of ultrathin sections for electron microscopy (오제스키병 바이러스 항원검출을 위한 면역조직화학적 연구 : 전자현미경적 관찰을 위한 초박절편내 protein A-gold labeling)

  • Kim, Soon-bok
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.4
    • /
    • pp.541-548
    • /
    • 1989
  • The present study was carried out to determine viral antigens and its morphogenesis in the ultrathin frozen and araldite sections of cell cultures infected with ADV by protein A-gold labeling. ADV antigens were labeled with 10nm gold probes, and electron-dense gold particles were mainly present on viral nucleocapsids and viral envelopes. Immunogold labeling in the ultracryosections showed a very low degree of interaction with tissue structures. Immunogold labeling in the ultrathin cryosections can be useful tool for the detection of ADV antigens, and the technique also may provide its great potential for immunocytochemical studies on various virus-host cell Interactions.

  • PDF

Study on Persistent Infection of Japanese Encephalitis Virus Beijing-l Strain in Serum-free Sf9 Cell Cultures

  • Kim, Hun;Lee, Su-Jeen;Park, Jin-Yong;Park, Yong-Wook;Kim, Hyun-Sung;Kang, Heui-Yun;Hur, Byung-Ki;Ryu, Yeon-Woo;Han, Sang-In
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.25-31
    • /
    • 2004
  • Sf9 cells have obvious advantages for the conventional production technology of vaccine. They are useful tools for high concentration and large-scale cultures. Sf9 cells were grown to maximal concentration, 8${\times}$l0$\^$6/ cells/$m\ell$ in a 500$m\ell$ spinner flask, with a doubling time at the exponentially growing phase of 24.5 hours, using serum-free media. To explore the ability of Sf9 cells to be infected by the Japanese encephalitis (JE) virus Beijing-l strain, Sf9 cells were infected with the virus. By 4-5 days post-infection, 10-15 % of the Sf9 cells showed cytopathic effect (CPE), from granularity to the formation of syncytia and multinucleated giant cells continuously observed over a period of 35 days. Positive fluorescent reactions were detected in 30-40% of cells infected with the JE virus Beijing-l strain, and the uninfected Sf9 cells were completely negative. Virus particles, propagated in Sf9 and Vero cells, were concentrated by sedimentation on 40% trehalose cushions by ultracentrifugation, and showed identical patterns of viral morphogenesis. Complete virus particles, 40 to 50 nm in diameter, were observed, and JE virus envelope (E) proteins, at 53 kDa, were found in the western blot analysis to the anti-JE virus E protein monoclonal antibody and reacted as a magenta band in the same position to the glycoprotein staining. To evaluate whether the infectious virus was produced in Sf9 cells inoculated with the JE virus Beijing-l stain, Sf9 cells were inoculated with the virus, and sample harvested every 5 days. The titers of the JE virus Beijing-l strain rose from 1.0${\times}$l0$\^$5/ to 1.5${\times}$l0$\^$6/ pfu/$m\ell$. The infected Sf9 cells could be subcultured in serum-free medium, with no change in the plaque sizes formed by the JE virus Beijing-l strain in the plaque assay. It is suggested that the ability of the JE virus Beijing-l strain to infect Sf9 cells in serum-free media will provide a useful insect cell system, where the JE virus replication, cytopathogenicity and vaccine immunogen can be studied.

Comparison of Cytoplasmic Inclusions Induced by Maize Dwarf Mosaic Virus Strain A and B (Maize Dwarf Mosaic Virus strain A와 B에 의해 유도된 세포질 봉입체의 비교분석)

  • Choi, Chang-Won;Gardner, Wayne S.
    • Applied Microscopy
    • /
    • v.24 no.2
    • /
    • pp.105-114
    • /
    • 1994
  • Comparative ultrastructural studies of sorghum (Sorghum bicolor L. Moench) cultivar (cv.) HOK and cv Pioneer 8680 leaf cells separately infected with maize dwarf mosaic virus (MDMV) strain A and B, respectively, revealed the formation of numerous cylindrical inclusions in both cross and longitudinal sections. The MDMV-A and -B were distinguished by the presence or absence of specific inclusion bodies in the cytoplasm. Electron microscope revealed the presence of pinwheels, bundles, scrolls, and laminated aggregates in Pioneer 8680 sorghum leaf cells infected with MDMV-B while no laminated aggregates were found in cells of HOK sorghum leaf cells infected with MDMV-A. Differences in the ultrastructure of cylindrical inclusions between two strains of MDMV, especially with respect to laminated aggregates, have been morphologically indexed to classify potyviruses into subdivision. The presence of laminated aggregates may be assigned to subdivision III while the absence of laminated aggregates is assigned to subdivision I. These variations of structures associated with cylindrical inclusions appeared virus-specific inductions and may be represented the morphogenesis of inclusion bodies following development of infections.

  • PDF

Phenotypes of Integrase-Mutated Human Immunodeficiency Virus Type-1(HIV-1)

  • ;Chris M. Farnet;William A. Haseltine
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.92-92
    • /
    • 1993
  • Point mutations in a highly conserved central region of the HIV-1 integrase protein were analyzed for their effects on viral replication and virion morphogenesis. Conservative amino acid replacements of two amino acid residues invariant un retroviral integrases, D116 and E152 of HIV-1, as well as the highly conserved amino acid S147, completely blocked viral replication in two CD4$\^$+/ human T cell lines. Mutation of four other highly conserved amino acids in the region had no detectable effect on viral replication, while Mutations at two positions, N117 and Y143, resulted in viruses with a delayed replication phenotype. Characteristic and reproducible defects id virion core structure were observed by electron microscopic analysis of sore of the replication defective integrase point mutants, indicating that mutant integrase proteins can interfere with the process of virion core maturation.

  • PDF

Infection Symptom and Electron Microscopic Visualization of Nuclear Polyhedrosis Virus (핵다면체 바이러스의 감염증상과 전자현미경적 연구)

  • Lee, Keun-Kwang;Kim, Young-Gill
    • Journal of fish pathology
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 1994
  • Nuclear polyhedrosis virus was successfully infected the continuous Sf cell line. At 12hrs post-infectio(P.I), the cell lost the motility and the nuclei of the cells were hypertrophied. At 24hrs P.I, the cells were somewhat abnormal form and PIB formation was observed. At 48hrs, the PIBs formed in all cells. PIBs in the nuclei were released in the culture media at 72hrs P.I. By the observation of NPV morphogenesis by electron microscopy at 13hrs P. I, the virogenic stroma formed in the nucleus, and nucleocapsids formed. At 48hrs P.I, many nucleocapsids were bundled and then occluded in PIB, and PIBs were matured. PIB shapes were mostly tetragonal and a polyhedron was about $3{\sim}10{\mu}m$ in size. Virions were rod shape. nucleocapsids ranging in size $30{\sim}40{\times}300{\sim}400nm$.

  • PDF