DOI QR코드

DOI QR Code

Interaction of Hepatitis C Virus Core Protein with Janus Kinase Is Required for Efficient Production of Infectious Viruses

  • Received : 2013.01.18
  • Accepted : 2013.02.27
  • Published : 2013.03.31

Abstract

Chronic hepatitis C virus (HCV) infection is responsible for the development of liver cirrhosis and hepatocellular carcinoma. HCV core protein plays not only a structural role in the virion morphogenesis by encapsidating a virus RNA genome but also a non-structural role in HCV-induced pathogenesis by blocking innate immunity. Especially, it has been shown to regulate JAK-STAT signaling pathway through its direct interaction with Janus kinase (JAK) via its proline-rich JAK-binding motif ($^{79}{\underline{P}}GY{\underline{P}}WP^{84}$). However, little is known about the physiological significance of this HCV core-JAK association in the context of the virus life cycle. In order to gain an insight, a mutant HCV genome (J6/JFH1-79A82A) was constructed to express the mutant core with a defective JAK-binding motif ($^{79}{\underline{A}}GY{\underline{A}}WP^{84}$) using an HCV genotype 2a infectious clone (J6/JFH1). When this mutant HCV genome was introduced into hepatocarcinoma cells, it was found to be severely impaired in its ability to produce infectious viruses in spite of its robust RNA genome replication. Taken together, all these results suggest an essential requirement of HCV core-JAK protein interaction for efficient production of infectious viruses and the potential of using core-JAK blockers as a new anti-HCV therapy.

Keywords

References

  1. Aaronson, D. S. and Horvath, C. M. (2002) A road map for those who don't know JAK-STAT. Science 296, 1653-1655. https://doi.org/10.1126/science.1071545
  2. Alter, M. J., Kruszon-Moran, D., Nainan, O. V., McQuillan, G. M., Gao, F., Moyer, L. A., Kaslow, R. A. and Margolis, H. S. (1999) The prevalence of hepatitis C virus infection in the United States, 1988 through 1994. N. Engl. J. Med. 341, 556-562. https://doi.org/10.1056/NEJM199908193410802
  3. Bach, E. A., Aguet, M. and Schreiber, R. D. (1997) The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu. Rev. Immunol. 15, 563-591. https://doi.org/10.1146/annurev.immunol.15.1.563
  4. Barba, G., Harper, F., Harada, T., Kohara, M., Goulinet, S., Matsuura, Y., Eder, G., Schaff, Z., Chapman, M. J., Miyamura, T. and Brechot, C. (1997) Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. Proc. Natl Acad. Sci. U.S.A. 94, 1200-1205. https://doi.org/10.1073/pnas.94.4.1200
  5. Basu, A., Meyer, K., Ray, R. B. and Ray, R. (2001) Hepatitis C virus core protein modulates the interferon-induced transacting factors of Jak/Stat signaling pathway but does not affect the activation of downstream IRF-1 or 561 gene. Virology 288, 379-390.
  6. Blight, K. J., Kolykhalov, A. A. and Rice, C. M. (2000) Efficient initiation of HCV RNA replication in cell culture. Science 290, 1972-1974. https://doi.org/10.1126/science.290.5498.1972
  7. Blight, K. J., McKeating, J. A. and Rice, C. M. (2002) Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J. Virol. 76, 13001-13014. https://doi.org/10.1128/JVI.76.24.13001-13014.2002
  8. Boehm, U., Klamp, T., Groot, M. and Howard, J. C. (1997) Cellular responses to interferon-gamma. Annu. Rev. Immunol. 15, 749-795. https://doi.org/10.1146/annurev.immunol.15.1.749
  9. Chang, J., Yang, S. H., Cho, Y. G., Hwang, S. B., Hahn, Y. S. and Sung, Y. C. (1998) Hepatitis C virus core from two different genotypes has an oncogenic potential but is not sufficient for transforming primary rat embryo fibroblasts in cooperation with the H-ras oncogene. J. Virol. 72, 3060-3065.
  10. Chang, K. S., Jiang, J., Cai, Z. and Luo, G. (2007) Human apolipoprotein e is required for infectivity and production of hepatitis C virus in cell culture. J. Virol. 81, 13783-13793. https://doi.org/10.1128/JVI.01091-07
  11. Cocquerel, L., Duvet, S., Meunier, J. C., Pillez, A., Cacan, R., Wychowski, C. and Dubuisson, J. (1999) The transmembrane domain of hepatitis C virus glycoprotein E1 is a signal for static retention in the endoplasmic reticulum. J. Virol. 73, 2641-2649.
  12. Cocquerel, L., Meunier, J. C., Pillez, A., Wychowski, C. and Dubuisson, J. (1998) A retention signal necessary and sufficient for endoplasmic reticulum localization maps to the transmembrane domain of hepatitis C virus glycoprotein E2. J. Virol. 72, 2183-2191.
  13. Coller, K. E., Heaton, N. S., Berger, K. L., Cooper, J. D., Saunders, J. L. and Randall, G. (2012) Molecular determinants and dynamics of hepatitis C virus secretion. PLoS Pathog. 8, e1002466. https://doi.org/10.1371/journal.ppat.1002466
  14. Di Bisceglie, A. M. (2000) Natural history of hepatitis C: its impact on clinical management. Hepatology 31, 1014-1018. https://doi.org/10.1053/he.2000.5762
  15. Fukasawa, M. (2010) Cellular lipid droplets and hepatitis C virus life cycle. Biol. Pharm. Bull. 33, 355-359. https://doi.org/10.1248/bpb.33.355
  16. Grakoui, A., McCourt, D. W., Wychowski, C., Feinstone, S. M. and Rice, C. M. (1993a) A second hepatitis C virus-encoded proteinase. Proc. Natl. Acad. Sci. U.S.A. 90, 10583-10587. https://doi.org/10.1073/pnas.90.22.10583
  17. Grakoui, A., Wychowski, C., Lin, C., Feinstone, S. M. and Rice, C. M. (1993b) Expression and identification of hepatitis C virus polyprotein cleavage products. J. Virol. 67, 1385-1395.
  18. Heim, M. H., Moradpour, D. and Blum, H. E. (1999) Expression of hepatitis C virus proteins inhibits signal transduction through the Jak-STAT pathway. J. Virol. 73, 8469-8475.
  19. Hosui, A., Ohkawa, K., Ishida, H., Sato, A., Nakanishi, F., Ueda, K., Takehara, T., Kasahara, A., Sasaki, Y., Hori, M. and Hayashi, N. (2003) Hepatitis C virus core protein differently regulates the JAK-STAT signaling pathway under interleukin-6 and interferon-gamma stimuli. J. Biol. Chem. 278, 28562-28571. https://doi.org/10.1074/jbc.M210485200
  20. Huang, H., Sun, F., Owen, D. M., Li, W., Chen, Y., Gale, M. Jr. and Ye, J. (2007) Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proc. Natl. Acad. Sci. U.S.A. 104, 5848-5853. https://doi.org/10.1073/pnas.0700760104
  21. Ihle, J. N. (1996) STATs: signal transducers and activators of transcription. Cell 84, 331-334. https://doi.org/10.1016/S0092-8674(00)81277-5
  22. Jiang, J. and Luo, G. (2009) Apolipoprotein E but not B is required for the formation of infectious hepatitis C virus particles. J. Virol. 83, 12680-12691. https://doi.org/10.1128/JVI.01476-09
  23. Jones, D. M. and McLauchlan, J. (2010) Hepatitis C virus: assembly and release of virus particles. J. Biol. Chem. 285, 22733-22739. https://doi.org/10.1074/jbc.R110.133017
  24. Lee, C. (2011) Discovery of hepatitis C virus NS5A inhibitors as a new class of anti-HCV therapy. Arch. Pharm. Res. 34, 1403-1407. https://doi.org/10.1007/s12272-011-0921-6
  25. Lee, C. and Laimins, L. A. (2004) Role of the PDZ domain-binding motif of the oncoprotein E6 in the pathogenesis of human papillomavirus type 31. J. Virol. 78, 12366-12377. https://doi.org/10.1128/JVI.78.22.12366-12377.2004
  26. Liang, T. J., Rehermann, B., Seeff, L. B. and Hoofnagle, J. H. (2000) Pathogenesis, natural history, treatment, and prevention of hepatitis C. Ann. Intern. Med. 132, 296-305. https://doi.org/10.7326/0003-4819-132-4-200002150-00008
  27. Lindenbach, B. D., Evans, M. J., Syder, A. J., Wolk, B., Tellinghuisen, T. L., Liu, C. C., Maruyama, T., Hynes, R. O., Burton, D. R., McKeating, J. A. and Rice, C. M. (2005) Complete replication of hepatitis C virus in cell culture. Science 309, 623-626. https://doi.org/10.1126/science.1114016
  28. Lohmann, V., Korner, F., Koch, J., Herian, U., Theilmann, L. and Bartenschlager, R. (1999) Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110-113. https://doi.org/10.1126/science.285.5424.110
  29. Luquin, E., Larrea, E., Civeira, M. P., Prieto, J. and Aldabe, R. (2007) HCV structural proteins interfere with interferon-alpha Jak/STAT signalling pathway. Antiviral Res. 76, 194-197. https://doi.org/10.1016/j.antiviral.2007.06.004
  30. Miyanari, Y., Atsuzawa, K., Usuda, N., Watashi, K., Hishiki, T., Zayas, M., Bartenschlager, R., Wakita, T., Hijikata, M. and Shimotohno, K. (2007) The lipid droplet is an important organelle for hepatitis C virus production. Nat. Cell Biol. 9, 1089-1097. https://doi.org/10.1038/ncb1631
  31. Moradpour, D., Penin, F. and Rice, C. M. (2007) Replication of hepatitis C virus. Nat. Rev. Microbiol. 5, 453-463. https://doi.org/10.1038/nrmicro1645
  32. Moriya, K., Fujie, H., Shintani, Y., Yotsuyanagi, H., Tsutsumi, T., Ishibashi, K., Matsuura, Y., Kimura, S., Miyamura, T. and Koike, K. (1998) The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat. Med. 4, 1065-1067. https://doi.org/10.1038/2053
  33. Pawlotsky, J. M. (2011) The results of Phase III clinical trials with telaprevir and boceprevir presented at the Liver Meeting 2010: a new standard of care for hepatitis C virus genotype 1 infection, but with issues still pending. Gastroenterology 140, 746-754. https://doi.org/10.1053/j.gastro.2011.01.028
  34. Ray, R. B., Lagging, L. M., Meyer, K. and Ray, R. (1996) Hepatitis C virus core protein cooperates with ras and transforms primary rat embryo fibroblasts to tumorigenic phenotype. J. Virol. 70, 4438-4443.
  35. Ray, R. B., Meyer, K., Steele, R., Shrivastava, A., Aggarwal, B. B. and Ray, R. (1998) Inhibition of tumor necrosis factor (TNF-alpha)-mediated apoptosis by hepatitis C virus core protein. J. Biol. Chem. 273, 2256-2259. https://doi.org/10.1074/jbc.273.4.2256
  36. Roingeard, P., Hourioux, C., Blanchard, E. and Prensier, G. (2008) Hepatitis C virus budding at lipid droplet-associated ER membrane visualized by 3D electron microscopy. Histochem. Cell Biol. 130, 561-566. https://doi.org/10.1007/s00418-008-0447-2
  37. Rouille, Y., Helle, F., Delgrange, D., Roingeard, P., Voisset, C., Blanchard, E., Belouzard, S., McKeating, J., Patel, A. H., Maertens, G., Wakita, T., Wychowski, C. and Dubuisson, J. (2006) Subcellular localization of hepatitis C virus structural proteins in a cell culture system that efficiently replicates the virus. J. Virol. 80, 2832-2841. https://doi.org/10.1128/JVI.80.6.2832-2841.2006
  38. Shepard, C. W., Finelli, L. and Alter, M. J. (2005) Global epidemiology of hepatitis C virus infection. Lancet Infect. Dis. 5, 558-567. https://doi.org/10.1016/S1473-3099(05)70216-4
  39. Sklan, E. H., Staschke, K., Oakes, T. M., Elazar, M., Winters, M., Aroeti, B., Danieli, T. and Glenn, J. S. (2007) A Rab-GAP TBC domain protein binds hepatitis C virus NS5A and mediates viral replication. J. Virol. 81, 11096-11105. https://doi.org/10.1128/JVI.01249-07
  40. Tscherne, D. M., Jones, C. T., Evans, M. J., Lindenbach, B. D., McKeating, J. A. and Rice, C. M. (2006) Time- and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry. J. Virol. 80, 1734-1741. https://doi.org/10.1128/JVI.80.4.1734-1741.2006
  41. Zeuzem, S., Feinman, S. V., Rasenack, J., Heathcote, E. J., Lai, M. Y., Gane, E., O'Grady, J., Reichen, J., Diago, M., Lin, A., Hoffman, J. and Brunda, M. J. (2000) Peginterferon alfa-2a in patients with chronic hepatitis C. N. Engl. J. Med. 343, 1666-1672. https://doi.org/10.1056/NEJM200012073432301

Cited by

  1. A white spot syndrome virus microRNA promotes the virus infection by targeting the host STAT vol.5, pp.1, 2016, https://doi.org/10.1038/srep18384
  2. Chemical genetics-based discovery of indole derivatives as HCV NS5B polymerase inhibitors vol.75, 2014, https://doi.org/10.1016/j.ejmech.2014.01.062
  3. Mangosteen xanthones suppress hepatitis C virus genome replication vol.49, pp.2, 2014, https://doi.org/10.1007/s11262-014-1098-0
  4. A hepatitis C virus NS4B inhibitor suppresses viral genome replication by disrupting NS4B’s dimerization/multimerization as well as its interaction with NS5A vol.47, pp.3, 2013, https://doi.org/10.1007/s11262-013-0956-5
  5. HCV replication in gastrointestinal mucosa: Potential extra-hepatic viral reservoir and possible role in HCV infection recurrence after liver transplantation vol.12, pp.7, 2017, https://doi.org/10.1371/journal.pone.0181683
  6. Synthesis and Structure-Activity Relationship of Novel Indole Acrylamide Derivatives as HCV Replication Inhibitors vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10021
  7. Roles of the PDZ domain-binding motif of the human papillomavirus type 16 E6 on the immortalization and differentiation of primary human foreskin keratinocytes vol.48, pp.2, 2014, https://doi.org/10.1007/s11262-013-1017-9
  8. Identification of a resveratrol tetramer as a potent inhibitor of hepatitis C virus helicase vol.173, pp.1, 2016, https://doi.org/10.1111/bph.13358
  9. Suppression of Hepatitis C Virus Genome Replication and Particle Production by a Novel Diacylglycerol Acyltransferases Inhibitor vol.23, pp.8, 2018, https://doi.org/10.3390/molecules23082083
  10. Integrated analysis of mRNA and viral miRNAs in the kidney of Carassius auratus gibelio response to cyprinid herpesvirus 2 vol.7, pp.None, 2013, https://doi.org/10.1038/s41598-017-14217-y
  11. Plant-Derived Purification, Chemical Synthesis, and In Vitro/In Vivo Evaluation of a Resveratrol Dimer, Viniferin, as an HCV Replication Inhibitor vol.11, pp.10, 2013, https://doi.org/10.3390/v11100890