• Title/Summary/Keyword: Virulent avian infectious disease

Search Result 9, Processing Time 0.023 seconds

Evolving Problem Analyses of Recent Marek's Disease (최근 진화하는 마렉병의 원인 분석)

  • Jang, H.K.;Park, Y.M.;Cha, S.Y.;Park, J.B.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.4
    • /
    • pp.301-318
    • /
    • 2007
  • Marek's disease (MD) is a highly contagious lymphoproliferative disease of poultry caused by the oncogenic herpesvirus designated Marek's disease virus (MDV). MD has a worldwide distribution and is thought to cause an annual loss over US$ one billion to the poultry industry. Originally described as a paralytic disease, today MD is mostly manifested as an acute disease with tumors in multiple visceral organs. MD is controlled essentially by the widespread use of live vaccines administered either in ovo into 18-day-old embryos or into chicks immediately after they hatch. In spite of the success of the vaccines in reducing the losses from the disease in the last 30 years, MDV strains have shown continuous evolution in virulence acquiring the ability to overcome the immune responses induced by the vaccines. During this period, different generations of MD vaccines have been introduced to protect birds from the increasingly virulent MDV strains. However, the virus will be countered each new vaccine strategy with ever more virulent strains. In spite of this concern, currently field problem from MD is likely to be controled by strategy of using bivalent vaccine. But, potential risk factors for outbreak of MD are still remained in this condition. The major factors can be thought that improper handling and incorrect administration of the vaccine, infection prior to establishment of immunity, suppression of immune system by environmental stress and outbreaks of more virulent MDV strain by using vaccine and genetic resistance of host.

Dexamethasone reduces infectious bursal disease mortality in chickens

  • Shin, Seung Yub;Han, Tae Hee;Kwon, Hyuk Joon;Kim, Sun Joong;Ryu, Pan Dong
    • Journal of Veterinary Science
    • /
    • v.22 no.3
    • /
    • pp.33.1-33.6
    • /
    • 2021
  • Very virulent infectious bursal disease virus (vvIBDV) causes high mortality in chickens but measures to reduce the mortality have not been explored. Chickens (8-9 weeks) were treated with 3 agents before and during vvIBDV inoculation. Dexamethasone treatment reduced the mortality of infected chickens (40.7% vs. 3.7%; p < 0.001), but treatment with aspirin or vitamin E plus selenium did not affect the mortality. The bursa of Fabricius appeared to have shrunk in both dead and surviving chickens (p < 0.01). The results indicate that dexamethasone can reduce mortality in vvIBDV-infected chickens and may provide therapeutic clues for saving individual birds infected by the virus.

Development of a Duplex RT-PCR Assay for the Simultaneous Detection and Discrimination of Avirulent and Virulent Newcastle Disease Virus (NDV) (뉴캣슬병 바이러스 검출 및 병원성 감별을 위한 Duplex RT-PCR법 개발)

  • Kim, Ji-Ye;Lee, Hyun-Jeong;Jang, Il;Lee, Hee-Soo;Yoon, Seung-Jun;Park, Ji-Sung;Seol, Jae-Goo;Kim, Seung-Han;Hong, Ji-Mu;Wang, Zillian;Liu, Hualei;Choi, Kang-Seuk
    • Korean Journal of Poultry Science
    • /
    • v.44 no.2
    • /
    • pp.93-102
    • /
    • 2017
  • A duplex RT-PCR (dRT-PCR) assay was developed for the simultaneous detection and discrimination of non-virulent and virulent Newcastle disease virus (NDV) in a single PCR tube. Primers targeting the large polymerase protein (L) gene and the fusion protein (F) gene of NDV were designed to detect all NDVs (by common type PCR primers) and virulent NDVs (by pathotype PCR primers), respectively and evaluated experimentally with reference NDV strains and other poultry viral pathogens. PCR products of the expected size of 386 bp were amplified from all NDV samples whereas PCR products of the expected size of 229 bp were amplified from virulent NDV samples alone. Cross reaction was not observed with other avian viral pathogens. The detection limit of NDV by the dRT-PCR was estimated to be $10^3$ 50% egg infectious dose/0.1 mL. In the dRT-PCR using field isolates of NDV, the pathotype PCR primers detected specifically all of virulent field isolates of NDV from Malaysia, Pakistan and China whereas common type PCR primers detected 94.4% (51/54) of field isolates of NDV from China. Three Chinese NDV isolates with false negative result were non-virulent viruses. Our results indicate that the dRT-PCR might provide a rapid and simple tool for rapid simultaneous detection and discrimination of non-virulent and virulent NDVs. Therefore the developed dRT-PCR assay provides a powerful novel means for the rapid diagnosis of Newcastle disease.

A study on wearing practice and improvement of personal protective equipment for participant handling livestock carcass infected with virulent avian infectious agents (가금류 악성 전염병 감염축 처리자의 보호 장비 착용실태 조사 및 개선에 관한 연구)

  • Lee, Hyeyeoun;Lim, Ui-Hyoung;Kim, Jong Won;Kim, Won-Il;Kang, A-Rum;Lim, Chae Woong;Hong, Chul Un;Han, Jihyeon;Kang, Seog-Jin;Kim, Bumseok
    • Korean Journal of Veterinary Service
    • /
    • v.38 no.4
    • /
    • pp.241-248
    • /
    • 2015
  • This study was aimed to investigate factors that affected the status of wearing personal protective equipment (PPE) for handling poultry carcasses with potential exposure to virulent avian infectious agents. A large outbreak of high pathogenic avian influenza (HPAI) occurred in South Korea in 2014. Many public officers participated for euthanizing and handling livestock carcass. However, several safety issues with using PPE were revealed. Therefore, a questionnaire survey was conducted for 340 people who participated euthanasia and carcass disposal in the place where HPAI mainly occurred in 2014. It was found that 31.8% of the respondents had ever taken off their protective equipment during operations because of its inconvenience. The most inconvenient PPE was goggles (54.6%), followed by mask (20.2%), latex gloves (11.6%), shoe covers (5.9%) and protective clothing (5.3%). The main complaints about this individual PPE was unclear sight, damp emitted toward eye, sweating, tearing easily and sweating, respectively. Considering such problems of PPE, new possible directions for improvement of gloves and goggles were suggested. With newly developed rubber coating fabric gloves and conventionally using latex and fabric gloves, H3N2 influenza virus transmission experiment was conducted. Rubber coating fabric gloves showed similar efficiency for blocking virus transmission with latex laboratory gloves and were not easily torn by sharp claws of chicken. In addition, air flow control safety eyewear was suggested to minimize moisture formation. The air flow control system efficiently suppressed moisture formation inside the goggles. Therefore our study will provide more specific directions about new PPE development for safety protection of actual wearers.

Recent Molecular Studies of Marek's Disease Virus and Control Approaches for Increasing Virulence (마렉병 바이러스의 분자적 병리기전과 증가하는 병원성에 대한 제어 방안)

  • Jang, H.K.;Park, Y.M.;Cha, S.Y.;Kwon, J.T.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.1
    • /
    • pp.57-76
    • /
    • 2007
  • Marek's disease (MD) is caused by a ubiquitous, lymphotropic alphaherpesvirus, MD virus (MDV). MD has been a major concern in the poultry industry due to the emergence of increasingly virulent strains over the last few decades that were isolated in the face of comprehensive vaccination. MD is characterized by a variety of clinical signs, amongst them neurological symptoms, chronic wasting, and most notably the development of multiple lymphomas that manifest as solid tumors in the viscera and musculature. Much work has been devoted to study MD-induced oncogenesis and genes involved in this process. Among the many genes encoded by MDV, a number have recently been shown to affect the development of tumors in chickens, one protein directly causing transformation of cells (Meq) and another being involved in maintaining transformed cells (vTR). Other MDV gene products modulate and are involved in early lytic in vivo replication, thereby increasing the chance of transformation occurring. In this review, specific genes encoded by MDV that are involved in the initiation and/or maintenance of transformation were briefly summarized, and limits of current vaccination and new control strategies against MD, particularly how modem molecular biological methods may be used to improve strategies to combat the disease in the future, were discussed.

High-throughput Gene Expression Analysis to Investigate Host-pathogen Interaction in Avian Coccidiosis

  • Lillehoj Hyun, S.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.1
    • /
    • pp.77-83
    • /
    • 2007
  • Poultry products including meat and eggs constitute a major protein source in the American diet and disease-causing pathogens represent major challenges to the poultry industry. More than 95% of pathogens enter the host through the mucosal surfaces of the respiratory, digestive and reproductive tracts and over the past few decades, the two main mechanisms used to control diseases have been the use of vaccines and antibiotics. However, in the poultry industry, there are mounting concerns over the ability of current vaccines to adequately protect against emerging hyper-virulent strains of pathogens and a lack of suitable, cost effective adjuvants. Thorough investigation of the immunogenetic responses involved in host-pathogen interactions will lead to the development of new and effective strategies for improving poultry health, food safety and the economic viability of the US poultry industry. In this paper, I describe the development of immunogenomic and proteomic tools to fundamentally determine and characterize the immunological mechanisms of the avian host to economically significant mucosal pathogens such as Eimeria. Recent completion of poultry genome sequencing and the development of several tissue-specific cDNA libraries in chickens are facilitating the rapid application of functional immunogenomics in the poultry disease research. Furthermore, research involving functional genomics, immunology and bioinformatics is providing novel insights into the processes of disease and immunity to microbial pathogens at mucosal surfaces. In this presentation, a new strategy of global gene expression using avian macrophage (AMM) to characterize the multiple pathways related to the variable immune responses of the host to Eimeria is described. This functional immunogenomics approach will increase current understanding of how mucosal immunity to infectious agents operates, and how it may be enhanced to enable the rational development of new and effective strategies against coccidiosis and other mucosal pathogens.

Rapid Detection of Infectious Bursal Disease Virus (IBDV) in Chickens by an Immunochromatographic Assay Kit

  • Choi, Kang-Seuk;Oh, Jin-Sik;Jeon, Woo-Jin;Na, Keon-Sok;Lee, Eun-Kyoung;Lee, Youn-Jeong;Sung, Hwan-Woo;Ha, Gun-Woo;Kwon, Jun-Hun
    • Korean Journal of Poultry Science
    • /
    • v.37 no.2
    • /
    • pp.167-172
    • /
    • 2010
  • An immunochromatograhy (IC) based infectious bursal disease virus (IBDV) detection kit, which employed two anti-IBDV VP2 monoclonal antibodies, was evaluated for rapid diagnosis of infectious bursal disease virus (IBD). The detection limit of the IC kit for IBDV was $10^{3.1}$ to $10^{3.9}$ $EID_{50}$/mL, indicating that the IC kit detected IBDV sensitively as same as double antigen capture ELISA but less than a RT-PCR assay. The IC kit did not detect other viral pathogens such as Newcastle disease virus, infectious bronchitis, avian influenza virus, and infectious larynotracheitis virus. When applied to tissue samples of experimental chickens died 3 or 4 days post infection after very virulent IBDV (strain Kr/D62) infection, the IC kit detected IBDV in all samples of the bursa of Fabricius, spleen, kidney, cecal tonsil and in 87.5%, 37.5% and 0% of liver, thymus and proventriculus samples. In particular, BF tissue samples showed stronger signal bands than other tissues. Positive signal was observed. All except for one thymus sample of samples having negative results by the IC kit showed the same result with DAS-ELISA but RT-PCR assay detected IBDV in some of IC kit negative samples of thymus and proventriculus. When swab samples from the bursa of Fabricius of dead chickens (n=231) on field farms were tested, the sensitivity and specificity of the IC assay relative to RT-PCR was 100% (109/109) and 97.5% (119/122), respectively and kappa value between both assay was 0.97. The kit can provide a useful aid for rapid detection of IBDV in chickens under field circumstances.

Immunogenomics approaches to study host innate immunity against intestinal parasites

  • Lillehoj, Hyun S.
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2006.11a
    • /
    • pp.7-16
    • /
    • 2006
  • Poultry products including meat and eggs constitute a major protein source in the American diet and disease - causing pathogens represent major challenges to the poultry industry. More than 95 % of pathogens enter the host through the mucosal surfaces of the respiratory, digestive and reproductive tracts and over the past few decades, the two main mechanisms used to control diseases have been the use of vaccines and antibiotics. However, in the poultry industry, there are mounting concerns over the ability of current vaccines to adequately protect against emerging hyper - virulent strains of pathogens and a lack of suitable, cost effective adjuvants. Thorough investigation of the immunogenetic responses involved in host-pathogen interactions will lead to the development of new and effective strategies for improving poultry health, food safety and the economic viability of the US poultry industry. In this paper, I describe the development of immunogenomic and proteomic tools to fundamentally determine and characterize the immunological mechanisms of the avian host to economically significant mucosal pathogens such as Eimeria. Recent completion of poultry genome sequencing and the development of several tissue-specific cDNA libraries in chickens are facilitating the rapid application of functional immunogenomics in the poultry disease research. Furthermore, research involving functional genomics, immunology and bioinformatics is providing novel insights into the processes of disease and immunity to microbial pathogens at mucosal surfaces. In this presentation, a new strategy of global gene expression using avian macrophage (AMM) to characterize the multiple pathways related to the variable immune responses of the host to Eimeria is described. This functional immunogenomics approach will increase current understanding of how mucosal immunity to infectious agents operates, and how it may be enhanced to enable the rational development of new and effective strategies against coccidiosis and other mucosal pathogens.

  • PDF

Immune Effect of Newcastle Disease Virus DNA Vaccine with C3d as a Molecular Adjuvant

  • Zhao, Kai;Duan, Xutong;Hao, Lianwei;Wang, Xiaohua;Wang, Yunfeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.2060-2069
    • /
    • 2017
  • Newcastle disease is a serious infectious disease in the poultry industry. The commercial vaccines can only offer limited protection and some of them are expensive and need adjuvants. At present, DNA vaccines are widely used. However, the immune responses induced by DNA vaccines are too slow and low. Here, we constructed the transfer vectors with a different number of C3d as molecular adjuvants (n = 1, 2, 4, or 6), and the vectors were cloned into the optimal eukaryotic expression plasmid (pVAXI-optiF) that expressed the F gene of Newcastle disease virus (NDV), and named pVAXI-F(o)-C3d1, pVAXI -F(o)-C3d2, pVAXI-F(o)-C3d4, and pVAXI-F(o)-C3d6, respectively. Cell transfection test indicated that pVAXI-F(o)-C3d6 showed the highest expression. In vivo immunization showed that the chickens immunized with pVAXI-F(o)-C3d6 intramuscularly induced better immune responses than the chickens immunized with the other plasmids. The protective efficacy of pVAXI-F(o)-C3d6 was 80% after challenge with the highly virulent NDV strain F48E9. The results in this study showed that C3d6 could be used as a molecular adjuvant to quickly induce an effective immune response to control NDV.