• Title/Summary/Keyword: Virtual monochromatic imaging

Search Result 5, Processing Time 0.024 seconds

Investigation of the Effect of kV Combinations on Image Quality for Virtual Monochromatic Imaging Using Dual-Energy CT: A Phantom Study

  • Jeon, Pil-Hyun;Chung, Heejun;Kim, Daehong
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Background: In this study, we investigate the image quality of virtual monochromatic images synthesized from dual-energy computed tomography (DECT) at voltages of 80/140 kV and 100/140 kV. Materials and Methods: Virtual monochromatic images of a phantom are synthesized from DECT scans from 40 to 70 keV in steps of 1 keV under the two combinations of tube voltages. The dose allocation of dual-energy (DE) scan is 50% for both low- and high-energy tubes. The virtual monochromatic images are compared to single-energy (SE) images at the same radiation dose. In the DE images, noise is reduced using the 100/140 kV scan at the optimal monochromatic energy. Virtual monochromatic images are reconstructed from 40 to 70 keV in 1-keV increments and analyzed using two quality indexes: noise and contrast-to-noise ratio (CNR). Results and Discussion: The DE scan mode with the 100/140 kV protocol achieved a better maximum CNR compared to the 80/140 kV protocol for various materials, except for adipose and brain. Image noise is reduced with the 100/140 kV protocol. The CNR values of DE with the 100/140 kV protocol is similar to or higher than that of SE at 120 kV at the same radiation dose. Furthermore, the maximum CNR with the 100/140 kV protocol is similar to or higher than that of the SE scan at 120 kV. Conclusion: It was found that the CNR achieved with the 100/140 kV protocol was better than that with the 80/140 kV protocol at optimal monochromatic energies. Virtual monochromatic imaging using the 100/140 kV protocol could be considered for application in breast, brain, lung, liver, and bone CT in accordance with the CNR results.

Study on the calibration phantom and metal artifacts using virtual monochromatic images from dual energy CT (듀얼 에너지 CT의 가상 단색 영상을 이용한 영상 교정 팬텀과 금속 인공음영에 관한 연구)

  • Lee, Jun seong;Lee, Seung hoon;Park, Ju gyung;Lee, Sun young;Kim, Jin ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • Purpose: To evaluate the image quality improvement and dosimetric effects on virtual monochromatic images of a Dual Source-Dual Energy CT(DS-DECT) for radiotherapy planning. Materials and Methods: Dual energy(80/Sn 140 kVp) and single energy(120 kVp) scans were obtained with dual source CT scanner. Virtual monochromatic images were reconstructed at 40-140 keV for the catphan phantom study. The solid water-equivalent phantom for dosimetry performs an analytical calculation, which is implemented in TPS, of a 10 MV, $10{\times}10cm^2$ photon beam incident into the solid phantom with the existence of stainless steel. The dose profiles along the central axis at depths were discussed. The dosimetric consequences in computed treatment plans were evaluated based on polychromatic images at 120 kVp. Results: The magnitude of differences was large at lower monochromatic energy levels. The measurements at over 70 keV shows stable HU for polystyrene, acrylic. For CT to ED conversion curve, the shape of the curve at 120 kVp was close to that at 80 keV. 105 keV virtual monochromatic images were more successful than other energies at reducing streak artifacts, which some residual artifacts remained in the corrected image. The dose-calculation variations in radiotherapy treatment planning do not exceed ${\pm}0.7%$. Conclusion: Radiation doses with dual energy CT imaging can be lower than those with single energy CT imaging. The virtual monochromatic images were useful for the revision of CT number, which can be improved for target coverage and electron densities distribution.

  • PDF

Application of Dual-Energy Spectral Computed Tomography to Thoracic Oncology Imaging

  • Cherry Kim;Wooil Kim;Sung-Joon Park;Young Hen Lee;Sung Ho Hwang;Hwan Seok Yong;Yu-Whan Oh;Eun-Young Kang;Ki Yeol Lee
    • Korean Journal of Radiology
    • /
    • v.21 no.7
    • /
    • pp.838-850
    • /
    • 2020
  • Computed tomography (CT) is an important imaging modality in evaluating thoracic malignancies. The clinical utility of dual-energy spectral computed tomography (DESCT) has recently been realized. DESCT allows for virtual monoenergetic or monochromatic imaging, virtual non-contrast or unenhanced imaging, iodine concentration measurement, and effective atomic number (Zeff map). The application of information gained using this technique in the field of thoracic oncology is important, and therefore many studies have been conducted to explore the use of DESCT in the evaluation and management of thoracic malignancies. Here we summarize and review recent DESCT studies on clinical applications related to thoracic oncology.

Effects of energy level, reconstruction kernel, and tube rotation time on Hounsfield units of hydroxyapatite in virtual monochromatic images obtained with dual-energy CT

  • Jeong, Dae-Kyo;Lee, Sam-Sun;Kim, Jo-Eun;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.49 no.4
    • /
    • pp.273-279
    • /
    • 2019
  • Purpose: This study was performed to investigate the effects of energy level, reconstruction kernel, and tube rotation time on Hounsfield unit (HU) values of hydroxyapatite (HA) in virtual monochromatic images (VMIs) obtained with dual-energy computed tomography (DECT)(Siemens Healthineers, Erlangen, Germany). Materials and Methods: A bone density calibration phantom with 3 HA inserts of different densities(CTWATER®; 0, 100, and 200 mg of HA/㎤) was scanned using a twin-beam DECT scanner at 120 kVp with tube rotation times of 0.5 and 1.0 seconds. The VMIs were reconstructed by changing the energy level (with options of 40 keV, 70 keV, and 140 keV). In order to investigate the impact of the reconstruction kernel, virtual monochromatic images were reconstructed after changing the kernel from body regular 40 (Br40) to head regular 40 (Hr40) in the reconstruction phase. The mean HU value was measured by placing a circular region of interests (ROIs) in the middle of each insert obtained from the VMIs. The HU values were compared with regard to energy level, reconstruction kernel, and tube rotation time. Results: Hydroxyapatite density was strongly correlated with HU values(correlation coefficient=0.678, P<0.05). For the HA 100 and 200 inserts, HU decreased significantly at increased energy levels(correlation coefficient= -0.538, P<0.05) but increased by 70 HU when using Hr40 rather than Br40 (correlation coefficient=0.158, P<0.05). The tube rotation time did not significantly affect the HU(P>0.05). Conclusion: The HU values of hydroxyapatite were strongly correlated with hydroxyapatite density and energy level in VMIs obtained with DECT.

Comparison of the Quality of Various Polychromatic and Monochromatic Dual-Energy CT Images with or without a Metal Artifact Reduction Algorithm to Evaluate Total Knee Arthroplasty

  • Hye Jung Choo;Sun Joo Lee;Dong Wook Kim;Yoo Jin Lee;Jin Wook Baek;Ji-yeon Han;Young Jin Heo
    • Korean Journal of Radiology
    • /
    • v.22 no.8
    • /
    • pp.1341-1351
    • /
    • 2021
  • Objective: To compare the quality of various polychromatic and monochromatic images with or without using an iterative metal artifact reduction algorithm (iMAR) obtained from a dual-energy computed tomography (CT) to evaluate total knee arthroplasty. Materials and Methods: We included 58 patients (28 male and 30 female; mean age [range], 71.4 [61-83] years) who underwent 74 knee examinations after total knee arthroplasty using dual-energy CT. CT image sets consisted of polychromatic image sets that linearly blended 80 kVp and tin-filtered 140 kVp using weighting factors of 0.4, 0, and -0.3, and monochromatic images at 130, 150, 170, and 190 keV. These image sets were obtained with and without applying iMAR, creating a total of 14 image sets. Two readers qualitatively ranked the image quality (1 [lowest quality] through 14 [highest quality]). Volumes of high- and low-density artifacts and contrast-to-noise ratios (CNRs) between the bone and fat tissue were quantitatively measured in a subset of 25 knees unaffected by metal artifacts. Results: iMAR-applied, polychromatic images using weighting factors of -0.3 and 0.0 (P-0.3i and P0.0i, respectively) showed the highest image-quality rank scores (median of 14 for both by one reader and 13 and 14, respectively, by the other reader; p < 0.001). All iMAR-applied image series showed higher rank scores than the iMAR-unapplied ones. The smallest volumes of low-density artifacts were found in P-0.3i, P0.0i, and iMAR-applied monochromatic images at 130 keV. The smallest volumes of high-density artifacts were noted in P-0.3i. The CNRs were best in polychromatic images using a weighting factor of 0.4 with or without iMAR application, followed by polychromatic images using a weighting factor of 0.0 with or without iMAR application. Conclusion: Polychromatic images combined with iMAR application, P-0.3i and P0.0i, provided better image qualities and substantial metal artifact reduction compared with other image sets.