DOI QR코드

DOI QR Code

Application of Dual-Energy Spectral Computed Tomography to Thoracic Oncology Imaging

  • Cherry Kim (Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine) ;
  • Wooil Kim (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Sung-Joon Park (Department of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine) ;
  • Young Hen Lee (Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine) ;
  • Sung Ho Hwang (Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine) ;
  • Hwan Seok Yong (Department of Radiology, Korea University Guro Hospital, College of Medicine Korea University) ;
  • Yu-Whan Oh (Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine) ;
  • Eun-Young Kang (Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine) ;
  • Ki Yeol Lee (Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine)
  • Received : 2019.09.25
  • Accepted : 2020.02.10
  • Published : 2020.07.01

Abstract

Computed tomography (CT) is an important imaging modality in evaluating thoracic malignancies. The clinical utility of dual-energy spectral computed tomography (DESCT) has recently been realized. DESCT allows for virtual monoenergetic or monochromatic imaging, virtual non-contrast or unenhanced imaging, iodine concentration measurement, and effective atomic number (Zeff map). The application of information gained using this technique in the field of thoracic oncology is important, and therefore many studies have been conducted to explore the use of DESCT in the evaluation and management of thoracic malignancies. Here we summarize and review recent DESCT studies on clinical applications related to thoracic oncology.

Keywords

References

  1. Hounsfield GN. Computerized transverse axial scanning (tomography): part 1. Description of system. Br J Radiol 1973;46:1016-1022  https://doi.org/10.1259/0007-1285-46-552-1016
  2. Goo HW, Goo JM. Dual-energy CT: new horizon in medical imaging. Korean J Radiol 2017;18:555-569  https://doi.org/10.3348/kjr.2017.18.4.555
  3. Mileto A, Barina A, Marin D, Stinnett SS, Roy Choudhury K, Wilson JM, et al. Virtual monochromatic images from dual-energy multidetector CT: variance in CT numbers from the same lesion between single-source projection-based and dual-source image-based implementations. Radiology 2016;279:269-277  https://doi.org/10.1148/radiol.2015150919
  4. Garcia LI, Azorin JF, Almansa JF. A new method to measure electron density and effective atomic number using dual-energy CT images. Phys Med Biol 2016;61:265-279  https://doi.org/10.1088/0031-9155/61/1/265
  5. Yu L, Leng S, McCollough CH. Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol 2012;199:S9-S15  https://doi.org/10.2214/AJR.12.9121
  6. Gyobu T, Honda O, Kawata Y, Kikuyama A, Miki H, Yanagawa M, et al. The effect of the virtual monochromatic spectral imaging for the metallic artifact and the pulmonary nodule detection. J Comput Assist Tomogr 2013;37:707-711  https://doi.org/10.1097/RCT.0b013e31829e0164
  7. Liu Z, Zhang Z, Chen C, Hong N. Value of virtual monochromatic spectral images with metal artifact reduction algorithm in dual-energy computed tomography-guided microcoil localization of pulmonary nodules. Medicine (Baltimore) 2018;97:e11562 
  8. Kim C, Kim D, Lee KY, Kim H, Cha J, Choo JY, et al. The optimal energy level of virtual monochromatic images from spectral CT for reducing beam-hardening artifacts due to contrast media in the thorax. AJR Am J Roentgenol 2018;211:557-563  https://doi.org/10.2214/AJR.17.19377
  9. Kaup M, Scholtz JE, Engler A, Albrecht MH, Bauer RW, Kerl JM, et al. Dual-energy computed tomography virtual monoenergetic imaging of lung cancer: assessment of optimal energy levels. J Comput Assist Tomogr 2016;40:80-85  https://doi.org/10.1097/RCT.0000000000000319
  10. Hou W, Sun X, Yin Y, Cheng J, Zhang Q, Xu J, et al. Improving image quality for lung cancer imaging with optimal monochromatic energy level in dual energy spectral computed tomography. J Comput Assist Tomogr 2016;40:243-247  https://doi.org/10.1097/RCT.0000000000000357
  11. Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG. Technical principles of dual source CT. Eur J Radiol 2008;68:362-368  https://doi.org/10.1016/j.ejrad.2008.08.013
  12. Thaiss WM, Sauter AW, Bongers M, Horger M, Nikolaou K. Clinical applications for dual energy CT versus dynamic contrast enhanced CT in oncology. Eur J Radiol 2015;84:2368-2379  https://doi.org/10.1016/j.ejrad.2015.06.001
  13. Sekiguchi T, Ozawa Y, Hara M, Nakagawa M, Goto T, Shibamoto Y. Visibility of the hilar lymph nodes using advanced virtual monoenergetic low-keV images for preoperative evaluation of lung cancer. Br J Radiol 2019;92:20180734 
  14. Yue D, Ru Xin W, Jing C, Fan Rong C, Li Fei S, Ai Lian L, et al. Virtual monochromatic spectral imaging for the evaluation of vertebral inconspicuous osteoblastic metastases from lung. Acta Radiol 2017;58:1485-1492  https://doi.org/10.1177/0284185117694511
  15. den Harder AM, Bangert F, van Hamersvelt RW, Leiner T, Milles J, Schilham AMR, et al. The effects of iodine attenuation on pulmonary nodule volumetry using novel dual-layer computed tomography reconstructions. Eur Radiol 2017;27:5244-5251  https://doi.org/10.1007/s00330-017-4938-1
  16. Chae EJ, Song JW, Seo JB, Krauss B, Jang YM, Song KS. Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology 2008;249:671-681  https://doi.org/10.1148/radiol.2492071956
  17. Yoo SY, Kim Y, Cho HH, Choi MJ, Shim SS, Lee JK, et al. Dual-energy CT in the assessment of mediastinal lymph nodes: comparative study of virtual non-contrast and true non-contrast images. Korean J Radiol 2013;14:532-539  https://doi.org/10.3348/kjr.2013.14.3.532
  18. Kim YN, Lee HY, Lee KS, Seo JB, Chung MJ, Ahn MJ, et al. Dual-energy CT in patients treated with anti-angiogenic agents for non-small cell lung cancer: new method of monitoring tumor response? Korean J Radiol 2012;13:702-710  https://doi.org/10.3348/kjr.2012.13.6.702
  19. Abdullayev N, Grosse Hokamp N, Lennartz S, Holz JA, Romman Z, Pahn G, et al. Improvements of diagnostic accuracy and visualization of vertebral metastasis using multi-level virtual non-calcium reconstructions from dual-layer spectral detector computed tomography. Eur Radiol 2019;29:5941-5949  https://doi.org/10.1007/s00330-019-06233-5
  20. Fehrenbach U, Kahn J, Boning G, Feldhaus F, Merz K, Frost N, et al. Spectral CT and its specific values in the staging of patients with non-small cell lung cancer: technical possibilities and clinical impact. Clin Radiol 2019;74:456-466  https://doi.org/10.1016/j.crad.2019.02.010
  21. Lin JZ, Zhang L, Zhang CY, Yang L, Lou HN, Wang ZG. Application of gemstone spectral computed tomography imaging in the characterization of solitary pulmonary nodules: preliminary result. J Comput Assist Tomogr 2016;40:907-911  https://doi.org/10.1097/RCT.0000000000000469
  22. Wu F, Zhou H, Li F, Wang JT, Ai T. Spectral CT imaging of lung cancer: quantitative analysis of spectral parameters and their correlation with tumor characteristics. Acad Radiol 2018;25:1398-1404  https://doi.org/10.1016/j.acra.2018.04.017
  23. Jia Y, Xiao X, Sun Q, Jiang H. CT spectral parameters and serum tumour markers to differentiate histological types of cancer histology. Clin Radiol 2018;73:1033-1040  https://doi.org/10.1016/j.crad.2018.07.104
  24. Chen X, Xu Y, Duan J, Li C, Sun H, Wang W. Correlation of iodine uptake and perfusion parameters between dual-energy CT imaging and first-pass dual-input perfusion CT in lung cancer. Medicine (Baltimore) 2017;96:e7479 
  25. Xiao H, Liu Y, Tan H, Liang P, Wang B, Su L, et al. A pilot study using low-dose spectral CT and ASIR (adaptive statistical iterative reconstruction) algorithm to diagnose solitary pulmonary nodules. BMC Med Imaging 2015;15:54 
  26. Wu L, Cao G, Zhao L, Tang K, Lin J, Miao S, et al. Spectral CT analysis of solitary pulmonary nodules for differentiating malignancy from benignancy: the value of iodine concentration spatial distribution difference. Biomed Res Int 2018;2018:4830659 
  27. Chen ML, Li XT, Wei YY, Qi LP, Sun YS. Can spectral computed tomography imaging improve the differentiation between malignant and benign pulmonary lesions manifesting as solitary pure ground glass, mixed ground glass, and solid nodules? Thorac Cancer 2019;10:234-242  https://doi.org/10.1111/1759-7714.12937
  28. Wang G, Zhang C, Li M, Deng K, Li W. Preliminary application of high-definition computed tomographic Gemstone Spectral Imaging in lung cancer. J Comput Assist Tomogr 2014;38:77-81  https://doi.org/10.1097/RCT.0b013e3182a21633
  29. Hou WS, Wu HW, Yin Y, Cheng JJ, Zhang Q, Xu JR. Differentiation of lung cancers from inflammatory masses with dual-energy spectral CT imaging. Acad Radiol 2015;22:337-344  https://doi.org/10.1016/j.acra.2014.10.004
  30. Yu Y, Wang X, Shi C, Hu S, Zhu H, Hu C. Spectral computed tomography imaging in the differential diagnosis of lung cancer and inflammatory myofibroblastic tumor. J Comput Assist Tomogr 2019;43:338-344  https://doi.org/10.1097/RCT.0000000000000840
  31. Yang F, Dong J, Wang X, Fu X, Zhang T. Non-small cell lung cancer: spectral computed tomography quantitative parameters for preoperative diagnosis of metastatic lymph nodes. Eur J Radiol 2017;89:129-135  https://doi.org/10.1016/j.ejrad.2017.01.026
  32. Aoki M, Takai Y, Narita Y, Hirose K, Sato M, Akimoto H, et al. Correlation between tumor size and blood volume in lung tumors: a prospective study on dual-energy gemstone spectral CT imaging. J Radiat Res 2014;55:917-923  https://doi.org/10.1093/jrr/rru026
  33. Lin LY, Zhang Y, Suo ST, Zhang F, Cheng JJ, Wu HW. Correlation between dual-energy spectral CT imaging parameters and pathological grades of non-small cell lung cancer. Clin Radiol 2018;73:412.e1-412.e7  https://doi.org/10.1016/j.crad.2017.11.004
  34. Li GJ, Gao J, Wang GL, Zhang CQ, Shi H, Deng K. Correlation between vascular endothelial growth factor and quantitative dual-energy spectral CT in non-small-cell lung cancer. Clin Radiol 2016;71:363-368  https://doi.org/10.1016/j.crad.2015.12.013
  35. Li M, Zhang L, Tang W, Jin YJ, Qi LL, Wu N. Identification of epidermal growth factor receptor mutations in pulmonary adenocarcinoma using dual-energy spectral computed tomography. Eur Radiol 2019;29:2989-2997  https://doi.org/10.1007/s00330-018-5756-9
  36. Liu G, Li M, Li G, Li Z, Liu A, Pu R, et al. Assessing the blood supply status of the focal ground-glass opacity in lungs using spectral computed tomography. Korean J Radiol 2018;19:130-138  https://doi.org/10.3348/kjr.2018.19.1.130
  37. Deniffel D, Sauter A, Dangelmaier J, Fingerle A, Rummeny EJ, Pfeiffer D. Differentiating intrapulmonary metastases from different primary tumors via quantitative dual-energy CT based iodine concentration and conventional CT attenuation. Eur J Radiol 2019;111:6-13  https://doi.org/10.1016/j.ejrad.2018.12.015
  38. Yan WQ, Xin YK, Jing Y, Li GF, Wang SM, Rong WC, et al. Iodine quantification using dual-energy computed tomography for differentiating thymic tumors. J Comput Assist Tomogr 2018;42:873-880  https://doi.org/10.1097/RCT.0000000000000800
  39. Baxa J, Vondrakova A, Matouskova T, Ruzickova O, Schmidt B, Flohr T, et al. Dual-phase dual-energy CT in patients with lung cancer: assessment of the additional value of iodine quantification in lymph node therapy response. Eur Radiol 2014;24:1981-1988  https://doi.org/10.1007/s00330-014-3223-9
  40. Liu L, Zhi X, Liu B, Zhang Y. Utilizing gemstone spectral CT imaging to evaluate the therapeutic efficacy of radiofrequency ablation in lung cancer. Radiol Med 2016;121:261-267  https://doi.org/10.1007/s11547-015-0602-5
  41. Izaaryene J, Vidal V, Bartoli JM, Loundou A, Gaubert JY. Role of dual-energy computed tomography in detecting early recurrences of lung tumours treated with radiofrequency ablation. Int J Hyperthermia 2017;33:653-658  https://doi.org/10.1080/02656736.2016.1274435
  42. Fehrenbach U, Feldhaus F, Kahn J, Boning G, Maurer MH, Renz D, et al. Tumour response in non-small-cell lung cancer patients treated with chemoradiotherapy-can spectral CT predict recurrence? J Med Imaging Radiat Oncol 2019;63:641-649  https://doi.org/10.1111/1754-9485.12926
  43. Aoki M, Akimoto H, Sato M, Hirose K, Kawaguchi H, Hatayama Y, et al. Impact of pretreatment whole-tumor perfusion computed tomography and 18F-fluorodeoxyglucose positron emission tomography/computed tomography measurements on local control of non-small cell lung cancer treated with stereotactic body radiotherapy. J Radiat Res 2016;57:533-540  https://doi.org/10.1093/jrr/rrw045
  44. Aoki M, Hirose K, Sato M, Akimoto H, Kawaguchi H, Hatayama Y, et al. Prognostic impact of average iodine density assessed by dual-energy spectral imaging for predicting lung tumor recurrence after stereotactic body radiotherapy. J Radiat Res 2016;57:381-386  https://doi.org/10.1093/jrr/rrv100
  45. Ren Y, Jiao Y, Ge W, Zhang L, Hua Y, Li C, et al. Dual-energy computed tomography-based iodine quantitation for response evaluation of lung cancers to chemoradiotherapy/radiotherapy: a comparison with fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography-based positron emission tomography/computed tomography response evaluation criterion in solid tumors. J Comput Assist Tomogr 2018;42:614-622  https://doi.org/10.1097/RCT.0000000000000734
  46. Sun YS, Zhang XY, Cui Y, Tang L, Li XT, Chen Y, et al. Spectral CT imaging as a new quantitative tool? Assessment of perfusion defects of pulmonary parenchyma in patients with lung cancer. Chin J Cancer Res 2013;25:722-728 
  47. Gonzalez-Perez V, Arana E, Barrios M, Bartres A, Cruz J, Montero R, et al. Differentiation of benign and malignant lung lesions: dual-energy computed tomography findings. Eur J Radiol 2016;85:1765-1772  https://doi.org/10.1016/j.ejrad.2016.07.019
  48. Li M, Zheng X, Li J, Yang Y, Lu C, Xu H, et al. Dual-energy computed tomography imaging of thyroid nodule specimens: comparison with pathologic findings. Invest Radiol 2012;47:58-64  https://doi.org/10.1097/RLI.0b013e318229fef3
  49. Kan WC, Wiley AL Jr, Wirtanen GW, Lange TA, Moran PR, Paliwal BR, et al. High Z elements in human sarcomata: assessment by multienergy CT and neutron activation analysis. AJR Am J Roentgenol 1980;135:123-129 https://doi.org/10.2214/ajr.135.1.123