References
- Hounsfield GN. Computerized transverse axial scanning (tomography): part 1. Description of system. Br J Radiol 1973;46:1016-1022 https://doi.org/10.1259/0007-1285-46-552-1016
- Goo HW, Goo JM. Dual-energy CT: new horizon in medical imaging. Korean J Radiol 2017;18:555-569 https://doi.org/10.3348/kjr.2017.18.4.555
- Mileto A, Barina A, Marin D, Stinnett SS, Roy Choudhury K, Wilson JM, et al. Virtual monochromatic images from dual-energy multidetector CT: variance in CT numbers from the same lesion between single-source projection-based and dual-source image-based implementations. Radiology 2016;279:269-277 https://doi.org/10.1148/radiol.2015150919
- Garcia LI, Azorin JF, Almansa JF. A new method to measure electron density and effective atomic number using dual-energy CT images. Phys Med Biol 2016;61:265-279 https://doi.org/10.1088/0031-9155/61/1/265
- Yu L, Leng S, McCollough CH. Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol 2012;199:S9-S15 https://doi.org/10.2214/AJR.12.9121
- Gyobu T, Honda O, Kawata Y, Kikuyama A, Miki H, Yanagawa M, et al. The effect of the virtual monochromatic spectral imaging for the metallic artifact and the pulmonary nodule detection. J Comput Assist Tomogr 2013;37:707-711 https://doi.org/10.1097/RCT.0b013e31829e0164
- Liu Z, Zhang Z, Chen C, Hong N. Value of virtual monochromatic spectral images with metal artifact reduction algorithm in dual-energy computed tomography-guided microcoil localization of pulmonary nodules. Medicine (Baltimore) 2018;97:e11562
- Kim C, Kim D, Lee KY, Kim H, Cha J, Choo JY, et al. The optimal energy level of virtual monochromatic images from spectral CT for reducing beam-hardening artifacts due to contrast media in the thorax. AJR Am J Roentgenol 2018;211:557-563 https://doi.org/10.2214/AJR.17.19377
- Kaup M, Scholtz JE, Engler A, Albrecht MH, Bauer RW, Kerl JM, et al. Dual-energy computed tomography virtual monoenergetic imaging of lung cancer: assessment of optimal energy levels. J Comput Assist Tomogr 2016;40:80-85 https://doi.org/10.1097/RCT.0000000000000319
- Hou W, Sun X, Yin Y, Cheng J, Zhang Q, Xu J, et al. Improving image quality for lung cancer imaging with optimal monochromatic energy level in dual energy spectral computed tomography. J Comput Assist Tomogr 2016;40:243-247 https://doi.org/10.1097/RCT.0000000000000357
- Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG. Technical principles of dual source CT. Eur J Radiol 2008;68:362-368 https://doi.org/10.1016/j.ejrad.2008.08.013
- Thaiss WM, Sauter AW, Bongers M, Horger M, Nikolaou K. Clinical applications for dual energy CT versus dynamic contrast enhanced CT in oncology. Eur J Radiol 2015;84:2368-2379 https://doi.org/10.1016/j.ejrad.2015.06.001
- Sekiguchi T, Ozawa Y, Hara M, Nakagawa M, Goto T, Shibamoto Y. Visibility of the hilar lymph nodes using advanced virtual monoenergetic low-keV images for preoperative evaluation of lung cancer. Br J Radiol 2019;92:20180734
- Yue D, Ru Xin W, Jing C, Fan Rong C, Li Fei S, Ai Lian L, et al. Virtual monochromatic spectral imaging for the evaluation of vertebral inconspicuous osteoblastic metastases from lung. Acta Radiol 2017;58:1485-1492 https://doi.org/10.1177/0284185117694511
- den Harder AM, Bangert F, van Hamersvelt RW, Leiner T, Milles J, Schilham AMR, et al. The effects of iodine attenuation on pulmonary nodule volumetry using novel dual-layer computed tomography reconstructions. Eur Radiol 2017;27:5244-5251 https://doi.org/10.1007/s00330-017-4938-1
- Chae EJ, Song JW, Seo JB, Krauss B, Jang YM, Song KS. Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology 2008;249:671-681 https://doi.org/10.1148/radiol.2492071956
- Yoo SY, Kim Y, Cho HH, Choi MJ, Shim SS, Lee JK, et al. Dual-energy CT in the assessment of mediastinal lymph nodes: comparative study of virtual non-contrast and true non-contrast images. Korean J Radiol 2013;14:532-539 https://doi.org/10.3348/kjr.2013.14.3.532
- Kim YN, Lee HY, Lee KS, Seo JB, Chung MJ, Ahn MJ, et al. Dual-energy CT in patients treated with anti-angiogenic agents for non-small cell lung cancer: new method of monitoring tumor response? Korean J Radiol 2012;13:702-710 https://doi.org/10.3348/kjr.2012.13.6.702
- Abdullayev N, Grosse Hokamp N, Lennartz S, Holz JA, Romman Z, Pahn G, et al. Improvements of diagnostic accuracy and visualization of vertebral metastasis using multi-level virtual non-calcium reconstructions from dual-layer spectral detector computed tomography. Eur Radiol 2019;29:5941-5949 https://doi.org/10.1007/s00330-019-06233-5
- Fehrenbach U, Kahn J, Boning G, Feldhaus F, Merz K, Frost N, et al. Spectral CT and its specific values in the staging of patients with non-small cell lung cancer: technical possibilities and clinical impact. Clin Radiol 2019;74:456-466 https://doi.org/10.1016/j.crad.2019.02.010
- Lin JZ, Zhang L, Zhang CY, Yang L, Lou HN, Wang ZG. Application of gemstone spectral computed tomography imaging in the characterization of solitary pulmonary nodules: preliminary result. J Comput Assist Tomogr 2016;40:907-911 https://doi.org/10.1097/RCT.0000000000000469
- Wu F, Zhou H, Li F, Wang JT, Ai T. Spectral CT imaging of lung cancer: quantitative analysis of spectral parameters and their correlation with tumor characteristics. Acad Radiol 2018;25:1398-1404 https://doi.org/10.1016/j.acra.2018.04.017
- Jia Y, Xiao X, Sun Q, Jiang H. CT spectral parameters and serum tumour markers to differentiate histological types of cancer histology. Clin Radiol 2018;73:1033-1040 https://doi.org/10.1016/j.crad.2018.07.104
- Chen X, Xu Y, Duan J, Li C, Sun H, Wang W. Correlation of iodine uptake and perfusion parameters between dual-energy CT imaging and first-pass dual-input perfusion CT in lung cancer. Medicine (Baltimore) 2017;96:e7479
- Xiao H, Liu Y, Tan H, Liang P, Wang B, Su L, et al. A pilot study using low-dose spectral CT and ASIR (adaptive statistical iterative reconstruction) algorithm to diagnose solitary pulmonary nodules. BMC Med Imaging 2015;15:54
- Wu L, Cao G, Zhao L, Tang K, Lin J, Miao S, et al. Spectral CT analysis of solitary pulmonary nodules for differentiating malignancy from benignancy: the value of iodine concentration spatial distribution difference. Biomed Res Int 2018;2018:4830659
- Chen ML, Li XT, Wei YY, Qi LP, Sun YS. Can spectral computed tomography imaging improve the differentiation between malignant and benign pulmonary lesions manifesting as solitary pure ground glass, mixed ground glass, and solid nodules? Thorac Cancer 2019;10:234-242 https://doi.org/10.1111/1759-7714.12937
- Wang G, Zhang C, Li M, Deng K, Li W. Preliminary application of high-definition computed tomographic Gemstone Spectral Imaging in lung cancer. J Comput Assist Tomogr 2014;38:77-81 https://doi.org/10.1097/RCT.0b013e3182a21633
- Hou WS, Wu HW, Yin Y, Cheng JJ, Zhang Q, Xu JR. Differentiation of lung cancers from inflammatory masses with dual-energy spectral CT imaging. Acad Radiol 2015;22:337-344 https://doi.org/10.1016/j.acra.2014.10.004
- Yu Y, Wang X, Shi C, Hu S, Zhu H, Hu C. Spectral computed tomography imaging in the differential diagnosis of lung cancer and inflammatory myofibroblastic tumor. J Comput Assist Tomogr 2019;43:338-344 https://doi.org/10.1097/RCT.0000000000000840
- Yang F, Dong J, Wang X, Fu X, Zhang T. Non-small cell lung cancer: spectral computed tomography quantitative parameters for preoperative diagnosis of metastatic lymph nodes. Eur J Radiol 2017;89:129-135 https://doi.org/10.1016/j.ejrad.2017.01.026
- Aoki M, Takai Y, Narita Y, Hirose K, Sato M, Akimoto H, et al. Correlation between tumor size and blood volume in lung tumors: a prospective study on dual-energy gemstone spectral CT imaging. J Radiat Res 2014;55:917-923 https://doi.org/10.1093/jrr/rru026
- Lin LY, Zhang Y, Suo ST, Zhang F, Cheng JJ, Wu HW. Correlation between dual-energy spectral CT imaging parameters and pathological grades of non-small cell lung cancer. Clin Radiol 2018;73:412.e1-412.e7 https://doi.org/10.1016/j.crad.2017.11.004
- Li GJ, Gao J, Wang GL, Zhang CQ, Shi H, Deng K. Correlation between vascular endothelial growth factor and quantitative dual-energy spectral CT in non-small-cell lung cancer. Clin Radiol 2016;71:363-368 https://doi.org/10.1016/j.crad.2015.12.013
- Li M, Zhang L, Tang W, Jin YJ, Qi LL, Wu N. Identification of epidermal growth factor receptor mutations in pulmonary adenocarcinoma using dual-energy spectral computed tomography. Eur Radiol 2019;29:2989-2997 https://doi.org/10.1007/s00330-018-5756-9
- Liu G, Li M, Li G, Li Z, Liu A, Pu R, et al. Assessing the blood supply status of the focal ground-glass opacity in lungs using spectral computed tomography. Korean J Radiol 2018;19:130-138 https://doi.org/10.3348/kjr.2018.19.1.130
- Deniffel D, Sauter A, Dangelmaier J, Fingerle A, Rummeny EJ, Pfeiffer D. Differentiating intrapulmonary metastases from different primary tumors via quantitative dual-energy CT based iodine concentration and conventional CT attenuation. Eur J Radiol 2019;111:6-13 https://doi.org/10.1016/j.ejrad.2018.12.015
- Yan WQ, Xin YK, Jing Y, Li GF, Wang SM, Rong WC, et al. Iodine quantification using dual-energy computed tomography for differentiating thymic tumors. J Comput Assist Tomogr 2018;42:873-880 https://doi.org/10.1097/RCT.0000000000000800
- Baxa J, Vondrakova A, Matouskova T, Ruzickova O, Schmidt B, Flohr T, et al. Dual-phase dual-energy CT in patients with lung cancer: assessment of the additional value of iodine quantification in lymph node therapy response. Eur Radiol 2014;24:1981-1988 https://doi.org/10.1007/s00330-014-3223-9
- Liu L, Zhi X, Liu B, Zhang Y. Utilizing gemstone spectral CT imaging to evaluate the therapeutic efficacy of radiofrequency ablation in lung cancer. Radiol Med 2016;121:261-267 https://doi.org/10.1007/s11547-015-0602-5
- Izaaryene J, Vidal V, Bartoli JM, Loundou A, Gaubert JY. Role of dual-energy computed tomography in detecting early recurrences of lung tumours treated with radiofrequency ablation. Int J Hyperthermia 2017;33:653-658 https://doi.org/10.1080/02656736.2016.1274435
- Fehrenbach U, Feldhaus F, Kahn J, Boning G, Maurer MH, Renz D, et al. Tumour response in non-small-cell lung cancer patients treated with chemoradiotherapy-can spectral CT predict recurrence? J Med Imaging Radiat Oncol 2019;63:641-649 https://doi.org/10.1111/1754-9485.12926
- Aoki M, Akimoto H, Sato M, Hirose K, Kawaguchi H, Hatayama Y, et al. Impact of pretreatment whole-tumor perfusion computed tomography and 18F-fluorodeoxyglucose positron emission tomography/computed tomography measurements on local control of non-small cell lung cancer treated with stereotactic body radiotherapy. J Radiat Res 2016;57:533-540 https://doi.org/10.1093/jrr/rrw045
- Aoki M, Hirose K, Sato M, Akimoto H, Kawaguchi H, Hatayama Y, et al. Prognostic impact of average iodine density assessed by dual-energy spectral imaging for predicting lung tumor recurrence after stereotactic body radiotherapy. J Radiat Res 2016;57:381-386 https://doi.org/10.1093/jrr/rrv100
- Ren Y, Jiao Y, Ge W, Zhang L, Hua Y, Li C, et al. Dual-energy computed tomography-based iodine quantitation for response evaluation of lung cancers to chemoradiotherapy/radiotherapy: a comparison with fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography-based positron emission tomography/computed tomography response evaluation criterion in solid tumors. J Comput Assist Tomogr 2018;42:614-622 https://doi.org/10.1097/RCT.0000000000000734
- Sun YS, Zhang XY, Cui Y, Tang L, Li XT, Chen Y, et al. Spectral CT imaging as a new quantitative tool? Assessment of perfusion defects of pulmonary parenchyma in patients with lung cancer. Chin J Cancer Res 2013;25:722-728
- Gonzalez-Perez V, Arana E, Barrios M, Bartres A, Cruz J, Montero R, et al. Differentiation of benign and malignant lung lesions: dual-energy computed tomography findings. Eur J Radiol 2016;85:1765-1772 https://doi.org/10.1016/j.ejrad.2016.07.019
- Li M, Zheng X, Li J, Yang Y, Lu C, Xu H, et al. Dual-energy computed tomography imaging of thyroid nodule specimens: comparison with pathologic findings. Invest Radiol 2012;47:58-64 https://doi.org/10.1097/RLI.0b013e318229fef3
- Kan WC, Wiley AL Jr, Wirtanen GW, Lange TA, Moran PR, Paliwal BR, et al. High Z elements in human sarcomata: assessment by multienergy CT and neutron activation analysis. AJR Am J Roentgenol 1980;135:123-129 https://doi.org/10.2214/ajr.135.1.123