References
- Forghani R, De Man B, Gupta R. Dual-energy computed tomography: physical principles, approaches to scanning, usage, and implementation: part 1. Neuroimaging Clin N Am 2017; 27: 371-84. https://doi.org/10.1016/j.nic.2017.03.002
- Johnson TR. Dual-energy CT: general principles. AJR Am J Roentgenol 2012; 199 (5 Suppl): S3-8. https://doi.org/10.2214/AJR.12.9116
- Lu X, Lu Z, Yin J, Gao Y, Chen X, Guo Q. Effects of radiation dose levels and spectral iterative reconstruction levels on the accuracy of iodine quantification and virtual monochromatic CT numbers in dual-layer spectral detector CT: an iodine phantom study. Quant Imaging Med Surg 2018; 9: 188-200. https://doi.org/10.21037/qims.2018.11.12
- Rassouli N, Etesami M, Dhanantwari A, Rajiah P. Detector- based spectral CT with a novel dual-layer technology: principles and applications. Insights Imaging 2017; 8: 589-98. https://doi.org/10.1007/s13244-017-0571-4
- Euler A, Parakh A, Falkowski AL, Manneck S, Dashti D, Krauss B, et al. Initial results of a single-source dual-energy computed tomography technique using a split-filter: assessment of image quality, radiation dose, and accuracy of dual-energy applications in an in vitro and in vivo study. Invest Radiol 2016; 51: 491-8. https://doi.org/10.1097/RLI.0000000000000257
- Yu L, Leng S, McCollough CH. Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol. 2012; 199 (5 Suppl): S9-15. https://doi.org/10.2214/AJR.12.9121
- Fulton N, Rajiah P. Abdominal applications of a novel detector-based spectral CT. Curr Probl Diagn Radiol 2018; 47: 110-8. https://doi.org/10.1067/j.cpradiol.2017.05.001
- Hamrahian AH, Ioachimescu AG, Remer EM, Motta-Ramirez G, Bogabathina H, Levin HS, et al. Clinical utility of noncontrast computed tomography attenuation value (Hounsfield units) to differentiate adrenal adenomas / hyperplasias from nonadenomas: Cleveland Clinic experience. J Clin Endocrinol Metab 2005; 90: 871-7. https://doi.org/10.1210/jc.2004-1627
- Levi C, Gray JE, McCullough EC, Hattery RR. The unreliability of CT numbers as absolute values. AJR Am J Roentgenol 1982; 139: 443-7. https://doi.org/10.2214/ajr.139.3.443
- Lamba R, McGahan JP, Corwin MT, Li CS, Tran T, Seibert JA, et al. CT Hounsfield numbers of soft tissues on unenhanced abdominal CT scans: variability between two different manufacturers' MDCT scanners. AJR Am J Roentgenol 2014; 203: 1013-20. https://doi.org/10.2214/AJR.12.10037
- Sande EP, Martinsen AC, Hole EO, Olerud HM. Interphantom and interscanner variations for Hounsfield units - establishment of reference values for HU in a commercial QA phantom. Phys Med Biol 2010; 55: 5123-35. https://doi.org/10.1088/0031-9155/55/17/015
- Jacobsen MC, Schellingerhout D, Wood CA, Tamm EP, Godoy MC, SUN J, et al. Intermanufacturer comparison of dual-energy CT iodine quantification and monochromatic attenuation: a phantom study. Radiology 2018; 287: 224-34. https://doi.org/10.1148/radiol.2017170896
- Junqueira LC, Carneiro J. Basic histology: text & atlas. 10th ed. New York: McGraw-Hill Companies; 2003. p. 144.
- van Hamersvelt RW, Schilham AM, Engelke K, den Harder AM, de Keizer B, Verhaar HJ, et al. Accuracy of bone mineral density quantification using dual-layer spectral detector CT: a phantom study. Eur Radiol 2017; 27: 4351-9. https://doi.org/10.1007/s00330-017-4801-4
- Yu L, Leng S. Image reconsgruction techniques [Internet]. Reston: American College of Radiology; 2016 [cited 2019 Sep 11]. Availaboe from: https://www.imagewisely.org/Imaging-Modalities/Computed-Tomography/Image-Reconstruction-Techniques.
- Achenbach S, Boehmer K, Pflederer T, Ropers D, Seltmann M, Lell M, et al. Influence of slice thickness and reconstruction kernel on the computed tomographic attenuation of coronary atherosclerotic plaque. J Cardiovasc Comput Tomogr 2010; 4:110-5. https://doi.org/10.1016/j.jcct.2010.01.013
- NDT Education Resource Center [Internet]. Ames: Iowa State University; 2001-2014 [cited 2019 Sep 11]. Transmitted intensity and linear attenuation coefficient. Available from: https://www.nde-ed.org/EducationResources/CommunityCollege/Radiography/Physics/attenuationCoef.htm.
- Hubbell JH, Seltzer SM. NIST Standard Reference Database 126. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z=1 to 92 and 48 additional substances of dosimetric interest [Internet]. Gaithersburg: National Institute of Standards and Technology; 1996 [cited 2019 Sep 11]. Available from: https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients.
- Okayama S, Soeda T, Takami Y, Kawakami R, Somekawa S, Uemura S, et al. The Influence of effective energy on computed tomography number depends on tissue characteristics in monoenergetic cardiac imaging. Radiol Res Pract 2012; 2012: 150980. https://doi.org/10.1155/2012/150980
- McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 2015; 276: 637-53. https://doi.org/10.1148/radiol.2015142631
- Fornaro J, Leschka S, Hibbeln D, Butler A, Anderson N, Pache G, et al. Dual- and multi-energy CT: approach to functional imaging. Insights Imaging 2011; 2: 149-59. https://doi.org/10.1007/s13244-010-0057-0
- Birnbaum BA, Hindman N, Lee J, Babb JS. Multi-detector row CT attenuation measurements: assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. Radiology 2007; 242: 109-19. https://doi.org/10.1148/radiol.2421052066