• Title/Summary/Keyword: Virtual Satellite

Search Result 98, Processing Time 0.021 seconds

Cloud-based Satellite Image Processing Service by Open Source Stack: A KARI Case

  • Lee, Kiwon;Kang, Sanggoo;Kim, Kwangseob;Chae, Tae-Byeong
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.339-350
    • /
    • 2017
  • In recent, cloud computing paradigm and open source as a huge trend in the Information Communication Technology (ICT) are widely applied, being closely interrelated to each other in the various applications. The integrated services by both technologies is generally regarded as one of a prospective web-based business models impacting the concerned industries. In spite of progressing those technologies, there are a few application cases in the geo-based application domains. The purpose of this study is to develop a cloud-based service system for satellite image processing based on the pure and full open source. On the OpenStack, cloud computing open source, virtual servers for system management by open source stack and image processing functionalities provided by OTB have been built or constructed. In this stage, practical image processing functions for KOMPSAT within this service system are thresholding segmentation, pan-sharpening with multi-resolution image sets, change detection with paired image sets. This is the first case in which a government-supporting space science institution provides cloud-based services for satellite image processing functionalities based on pure open source stack. It is expected that this implemented system can expand with further image processing algorithms using public and open data sets.

Network Configuration Study for Multi-Satellite Operations (다중위성운영을 위한 네트워크 구성 방안 연구)

  • Baek, Hyun Chul;Jang, In Sik;Lee, Sang Jeong;Kim, Byung Chul;Lee, Jae Yong
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • Integration of satellites with diverse missions, such as broadcast-communication, earth, meteorologicaland marine observations, and navigation, is vulnerable. The problems of the currently constructed ground station network were analyzed by constructing the test environment. Based on this, we designed a network that was capable of operating multiple satellites by one ground station. In addition, we proposed an interface and network configuration method with domestic and foreign ground stations. The network linking the domestic and foreign ground stations was composed of KREONET (Korea Research Environment Open Network) and GLORIAD (Global Ring Network for Advanced Application Development) of the KISTI(Korea Institute of Science and Technology Information). The internal network consists of VPN (Virtual Private Network), DMZ(De-Militarized Zone), and 1-way USB and so forth. By constructing the network by using the proposed method, harmful data, such as virus inflow and infection, can be blocked.

FKP and VRS among Network RTK GNSS methods Accuracy Evaluation of Observation Methods (Network RTK GNSS방법 중 FKP와 VRS 관측 방법의 정확도 평가)

  • Jae-Woo, KIM;Do-Yeoul, MUN;Yeong-Jong, KIM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.200-209
    • /
    • 2022
  • Providing real-time location information is emerging as a major goal of the national industry. In order to provide such real-time location information (3D spatial information), it is essential to develop a technology for a satellite positioning method. Therefore, the country continues to make efforts to increase satisfaction with the needs of consumers by introducing the Network RTK GNSS method. In this study, among the Network RKT GNSS(Global Navigation Satellite System) methods provided by the National Geographic Information Service, continuous observation and single observation were measured at the integrated reference point using VRS(Virtual Reference Station) and FKP(Flӓachen-Korrektur Parameter) to evaluate accuracy. In addition, we aim to maximize efficiency by presenting accuracy on the rapidly increasing Network RTK GNSS method in the field.

Virtual Ground Based Augmentation System

  • Core, Giuseppe Del;Gaglione, Salvatore;Vultaggio, Mario;Pacifico, Armando
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.33-37
    • /
    • 2006
  • Since 1993, the civil aviation community through RTCA (Radio Technical Commission for Aeronautics) and the ICAO (International Civil Air Navigation Organization) have been working on the definition of GNSS augmentation systems that will provide improved levels of accuracy and integrity. These augmentation systems have been classified into three distinct groups: Aircraft Based Augmentation Systems (ABAS), Space Based Augmentation Systems (SBAS) and Ground Based Augmentation Systems (GBAS). The last one is an implemented system to support Air Navigation in CAT-I approaching operation. It consists of three primary subsystems: the GNSS Satellite subsystem that produces the ranging signals and navigation messages; the GBAS ground subsystem, which uses two or more GNSS receivers. It collects pseudo ranges for all GNSS satellites in view and computes and broadcasts differential corrections and integrity-related information; the Aircraft subsystem. Within the area of coverage of the ground station, aircraft subsystems may use the broadcast corrections to compute their own measurements in line with the differential principle. After selection of the desired FAS for the landing runway, the differentially corrected position is used to generate navigation guidance signals. Those are lateral and vertical deviations as well as distance to the threshold crossing point of the selected FAS and integrity flags. The Department of Applied Science in Naples has create for its study a virtual GBAS Ground station. Starting from three GPS double frequency receivers, we collect data of 24h measures session and in post processing we generate the GC (GBAS Correction). For this goal we use the software Pegasus V4.1 developed from EUROCONTROL. Generating the GC we have the possibility to study and monitor GBAS performance and integrity starting from a virtual functional architecture. The latter allows us to collect data without the necessity to found us authorization for the access to restricted area in airport where there is one GBAS installation.

  • PDF

Design of a Virtual Machine based on the Lua interpreter for the On-Board Control Procedure Execution Environment (탑재운영절차서 실행환경을 위한 Lua 인터프리터 기반의 가상머신 설계)

  • Kang, Sooyeon;Koo, Cheolhea;Ju, Gwanghyeok;Park, Sihyeong;Kim, Hyungshin
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.127-133
    • /
    • 2014
  • In this paper, we present the design, functions and performance analysis of the virtual machine (VM) based on the Lua interpreter for On-Board Control Procedure Execution Environment (OEE). The development of the OEE has been required in order to operate the lunar explorer mission autonomously which is planned by Korea Aerospace Research Institute (KARI) autonomously. The concept of On-Board Control Procedure (OBCP) is already being applied to the deep space missions with a long propagation delay and a limited data transmission capacity since it ensure he autonomy of the mission without the ground intervention. The interpreter is the execution engine in the VM and it interpreters high-level programming codes line by line and executes the VM instructions. So the execution speed is very more slower than that of natively compiled codes. In order to overcome it, we design and implement OEE using register-based Lua interpreter for execution engine in OEE. We present experimental results on a range of additional hardware configurations such as usages of cache and floating point unit. We expect those to utilized to the OBCP scheduling policy and the system with Lua interpreter.

Development of a Virtual Reference Station-based Correction Generation Technique Using Enhanced Inverse Distance Weighting

  • Tae, Hyunu;Kim, Hye-In;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.79-85
    • /
    • 2015
  • Existing Differential GPS (DGPS) pseudorange correction (PRC) generation techniques based on a virtual reference station cannot effectively assign a weighting factor if the baseline distance between a user and a reference station is not long enough. In this study, a virtual reference station DGPS PRC generation technique was developed based on an enhanced inverse distance weighting method using an exponential function that can maximize a small baseline distance difference due to the dense arrangement of DGPS reference stations in South Korea, and its positioning performance was validated. For the performance verification, the performance of the model developed in this study (EIDW) was compared with those of typical inverse distance weighting (IDW), first- and second-order multiple linear regression analyses (Planar 1 and 2), the model of Abousalem (1996) (Ab_EXP), and the model of Kim (2013) (Kim_EXP). The model developed in the present study had a horizontal accuracy of 53 cm, and the positioning based on the second-order multiple linear regression analysis that showed the highest positioning accuracy among the existing models had a horizontal accuracy of 51 cm, indicating that they have similar levels of performance. Also, when positioning was performed using five reference stations, the horizontal accuracy of the developed model improved by 8 ~ 42% compared to those of the existing models. In particular, the bias was improved by up to 27 cm.

Virtual City System Based on 3D-Web GIS for U-City Construction (U-City 구현을 위한 3D-Web GIS 기반의 가상도시 시스템)

  • Jo, Byung-Wan;Lee, Yun-Sung;Yoon, Kwang-Won;Park, Jung-Hun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.389-395
    • /
    • 2012
  • U-City has been promoted nation-wide by development of recent IT technology. This paper studied the concept of 3D-virtual city in order to realize the current Ubiquitous City(U-City) efficiently, and to manage all the RFID/USN monitoring data in the real U-City. 3D-Virtual City is the concept of the reproduction of real world U-City, for embodying Ubiquitous technology while using Digital map, satellite image, VRML(Virtual Reality Modeling Language). U&V-City is the four-dimensional future city that real-time wire/wireless communication network and 3D-web GIS shall be connected that massive database, intelligent service be perceived through employing EAI(External Authoring Interface) that provides HTML&JAVA, and interface for efficient removal/process of massive information/ service and also by employing GPS/LBS/Navigation in support of world-wide orientation concept, and RTLS(Real Time Location System).

Performance Testing of Satellite Image Processing based on OGC WPS 2.0 in the OpenStack Cloud Environment (오픈스택 클라우드 환경 OGC WPS 2.0 기반 위성영상처리 성능측정 시험)

  • Yoon, Gooseon;Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.617-627
    • /
    • 2016
  • Many kinds of OGC-based web standards have been utilized in the lots of geo-spatial application fields for sharing and interoperable processing of large volume of data sets containing satellite images. As well, the number of cloud-based application services by on-demand processing of virtual machines is increasing. However, remote sensing applications using these two huge trends are globally on the initial stage. This study presents a practical linkage case with both aspects of OGC-based standard and cloud computing. Performance test is performed with the implementation result for cloud detection processing. Test objects are WPS 2.0 and two types of geo-based service environment such as web server in a single core and multiple virtual servers implemented on OpenStack cloud computing environment. Performance test unit by JMeter is five requests of GetCapabilities, DescribeProcess, Execute, GetStatus, GetResult in WPS 2.0. As the results, the performance measurement time in a cloud-based environment is faster than that of single server. It is expected that expansion of processing algorithms by WPS 2.0 and virtual processing is possible to target-oriented applications in the practical level.

Re-entry Survivability and On-Ground Risk Analysis of Low Earth Orbit Satellite (저궤도 위성의 대기권 재진입 시 생존성 및 피해확률 분석)

  • Jeong, Soon-Woo;Min, Chan-Oh;Lee, Mi-Hyun;Lee, Dae-Woo;Cho, Kyeum-Rae;Bainum, Peter M.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.158-164
    • /
    • 2014
  • LEO(Low Earth Orbit) Satellite which is discarded should be reentered to atmosphere in 25 years by '25 years rule' of IADC(Inter-Agency Space Debris Coordination Committee) Guidelines. If the parts of satellite are survived from severe aerothermodynamic condition, it could damage to human and property. South Korea operates KOMPSAT-2 and STSAT series as LEO satellite. It is necessary to dispose of them by reentering atmosphere. Therefore this paper analyze the trajectory, survivability, casualty area and casualty probability of a virtual LEO satellite using ESA(European Space Agency)'s DRAMA(Debris Risk Assesment and Mitigation Analysis) tool. As a result, it is noted that casuality area is $15.2742m^2$ and casualty probability is 5.9614E-03 then will be survived 198.831kg.

A Study on Basic Modeling Method for MTF Analysis of Observation Satellites (관측위성의 MTF 해석을 위한 기본 모델링 기법 연구)

  • Kim, Do-Myung;Kim, Deok-Ryeol;Kim, Nak-Wan;Suk, Jin-Young;Kim, Hee-Seob;Kim, Gyu-Sun;Hyun, Young-Mok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.472-482
    • /
    • 2008
  • A modulation transfer function(MTF) tree is established to estimate the overall MTF of an observation satellite and to analyze the image performance. Basic MTF models relevant to each MTF tree component are represented as mathematical relationship between optics-structural dynamics, thermal deformation, attitude and dynamic characteristics of a satellite and the effects due to the space environment. The Basic MTF models consist of diffraction limited MTF with central obscuration, aberration, defocus, line-of-sight(LOS) jitter, linear motion, detector integration, and so forth. Performance estimation is demonstrated for a virtual earth-observation satellite in order to validate the constructed modeling method. The proposed models enable the system engineers to calculate the overall system MTF and to determine the crucial design parameters that affect the image performance in the conceptual design phase of an observation satellite.