SAYMSFMAATS =2 K| HOH 45 (K9-4-24)

AL G AN AYBHL 913 Lua AT 7]

* *k Fokok Fokokok Fxkk

ool ag, 7Es”, FEe” Ay, g

o
A
M
_]0

ogk
ool

Design of a Virtual Machine based on the Lua interpreter for the
On-Board Control Procedure Execution Environment

*x

Sooyeon Kang* Regular Member, Cheolhea Koo , Gwanghyeok o, Sihyeong Park Hyungshin Kim

o
Q‘L
it
fru
fans)
o
ne,
4
=2
1o
=)
ox
oX,
it
K
i
N
X
>
02‘:,"
i)
rlr
=
o
=
%
>
112
o
Jp
k1
N
L
g
)
_0|L
)
Ir

A FABGTh 45w Ave GAS G ™A 2AEY Wk # ol Lua JHZEE A& A
S Aow Jgert

Key Words : On-Board Control Procedure (OBCP), OBCP Execution Environment (OEE), Virtual Machine, Lua interpreter,
On-Board Software (OBS)

ABSTRACT . .

In this paper, we present the design, functions and performance analysis of the virtual machine (VM) based on the Lua
interpreter for On-Board Control Procedure Execution Environment (OEE). The development of the OEE has been required
in order to operate the lunar explorer mission autonomously which is planned by Korea Aerospace Research Institute (KARI)
autonomously. The concept of On-Board Control Procedure (OBCP) is already being applied to the deep space missions with
a long propagation delay and a limited data transmission capacity since it ensure he autonomy of the mission without the
ground intervention. The interpreter is the execution engine in the VM and it interpreters high-level programming codes line
by line and executes the VM instructions. So the execution speed is very more slower than that of natively compiled codes.
In order to overcome it, we design and implement OEE using register-based Lua interpreter for execution engine in OEE.
We present experimental results on a range of additional hardware configurations such as usages of cache and floating point
unit. We expect those to utilized to the OBCP scheduling policy and the system with Lua interpreter.

I Introduction and ground is limited due to long propagation delay.
Spacecraft operations are traditionally performed by
Tn deep space missions like the lunar explorer, low SNR, using Flight Control Procedures (FCPs) and Mission Time

and signal distortion, a high level of autonomy in the Line (MTL). FCPs are executed step-by-step by a ground

operations is required because contact time between space operator, which involves sending Telecommands (TC)s to

Srrahrea el AT ol (sykang@kari.rekr)
" Eerd el GEAIET (chkoo@karirekr), EEESEATY SEAFITA (ghju@kari re.kr),

Zgdisty AEe sk dHtje A AEIA LA (sihyeong@cnu.ac.kr, hyungshin@cnu.ac.kr)
A=Al - 20149 129 1Y, AR YA} 20149 129 22, HSAANSI LA}« 2014 129 229

127

HOZMAATE =2 HOH HM4Z

the spacecraft and checking Telemetry (TM) downlinked
to ground. MTL is a sequence of time-tagged TC loaded
from ground and executed by the OBS, and is planned to
be executed when the time tag expires. While MTL allows
for autonomous on-board TC execution, the concept is
limited as it consists in concept of success-oriented
commanding and it is nearly impossible to react
immediately to unexpected behavior such as failed TC[1].
The complexity of the OBS is increased when autonomous
capability is required to cope with non—nominal situations.
Although such recovery function can be applied to the
OBS on orbit through reload and patch from ground, it is
clearly impractical and risky for the mission due to hazard
and complexity coming from the operation. Further it is
one of major reasons of that cost of ground operation is
hard to be saved.

—

// OBGP Execution

Environment

" OBCP

Preparation
Environment

L

EngineéFing
Database

Figure 1. OBCP System [2]

As a solution to the above problems, ESA has
introduces and released "Spacecraft On-Board Control
Procedures” for space standardization in order to define
the OBCP concept for the OBCP system that can be
applied for any mission. It provides some sorts of
functionalities that are useful for controlling the spacecraft
through small script-like programs written in a specific
language. The OBCP system consists of an OBCP
preparation environment located on the ground and an
OEE located on-board[2]. Figure 1 shows the OBCP
system. After OBCPs are programmed, compiled on the
OBCP preparation environment and uploaded on-board,
they are handled by the OEE platform, which is
responsible for loading, scheduling, executing, controlling
and monitoring OBCPs. Particularly the OEE shall satisfy

the reusability, the portability, the operability and the
maintainability for the space mission systems in terms of
lowering of complexity, handling un—expectation situation,
performing deep space exploration, saving cost and short
development period.
Therefore OBCPs
functionality late in the project, when OBS is frozen and
the modification of OBS is difficult to apply due to
development schedule or cost. An amount of ground

can be wused to implement

operations activities can be simplified or reduced by using
OBCPs. For example a sequence uplink budget and the
amount of MTL commands can be substituted by
operations of OBCPs[3].

The rest of this paper is organized as follows. In section
2, we describe the related projects which utilize the OBCP
systems at their mission. In section 3, we introduce the
design of the VM based on the Lua interpreter for the
OEE of the OBCP system in order to meet the operational
autonomy requirements and capabilities for the Korea
lunar mission. In section 4, we present the experimental
evaluation of our designed VM. Finally, in section 5, we
conclude with a summary of our work presented in this
paper. Figure 1. OBCP System[2]

. Related Works

The first ESA mission to fly OBCP-like facilities was
the European Retrievable Carrier (EURECA) in 1992
Although EURECA was a mission in the earth orbit,
limited ground station contact time demanded for a
significant amount of spacecraft operations have been
executed autonomously by OBCPl1]. Rosetta and Venus
Express missions are successfully using OBCPs. The
OBCP concept for Rosetta mission is based on the
successful EURECA OBCP experience. As Rosetta
encounters long propagation delays, unstable
communication link and low data rates throughout the
mission, advanced spacecraft is utilized, and it is achieved
through OBCPs. Venus Express inherits major parts of the
Rosetta data handling OBS, including the OBCP
facility[11[4]. OBCPs embedded in Rosetta and Venus
Express mission is written in Spacecraft Control
Language (SCL) which is specially designed for simplicity
and safety and is suitable for mission—critical applications.
SCL is based on the syntax and semantic of Ada 83,
which is a structured, strongly and statically typed

imperative language[5]. The Herschel/Planck and GOCE

128

HR2EERIAM HHSAS QI8 Lua QIEIZE|E 7|8te| JHemAl M7

missions support another OBCP environment based on
On-Board Command Language (OCL) to define the OBCP
source code. OCL is similar but equal to ANSI C[6]. The
OBCP concept has been applied for Communication Ocean
Meteorological Satellite (COMS) mission. COMS is the
first Korea multi-mission geostationary satellite. COMS
has an Interpreter Program Environment (IPE) as a part
of OBS. IPR takes charge of managing, scheduling and
interpreting interpreted programs (IPs)
Application Program Language (APL)[7][8].

written in

Table 1. OBCP technologies and capabilities in Space

Missions
Herschel,
Plank,
Rosetta Venus COMS
GOCE,
Gala
Language SCL SCL OCL APL
Max.Code Size 8 Kb 4 Kb 64 Kb 16 Kw
Max.Num.of
OBCPs
20 10 16 21
concurrently
running
Scheduling
. NP RR NP RR P&P NP RR
Policy
NP : Non-Preemptive, RR : Round-Robin
P&P : Priority based Preemptive

II. Related The virtual Machine for

the OEE

OBS is composed of Basic Software (BSW), Application
Software (ASW) and OEE. Figure 2 presents the general

OBS architecture for OBCP.

OBS runs on the real hardware target processor (e.g.
SPARC, PowerPC, etc.) with real-time operating system.
OEE is a VM for supporting and managing OBCP
functionalities. It provides the execution environment
which is responsible for loading, scheduling, executing,
controlling and monitoring OBCPs. OEE has three
functions, which are OBCP manager, OBCP scheduler and
OBCP interpreter.

Application Software osce | | oBce | | oace |+ ¢ ¢ oBCP

(ASW)

Figure 2. OBS Architecture for OBCP

The context in which the OBCP operates is shown in
Figure 3. TCs and events from ground and other functions
of OBS to OEE and a specific OBCP are processed by
OBCP manager. OBCPs are executed by OBCP scheduler
which is activated by scheduling tasks according to
activation levels. The run-time library (RTL), which
provides a set of functions mainly acting as interface to
the BSW. These functions are used as library function in
order to extend the Lua language. RTL is made of
interface library, data access library, message library,
communication interface library between OBCP and

devices and error library.

OBCP
Storage

OBCP Execution Environment

Application Basic S/W

Memor |
Srw T™M/TC y
Service
- [oBCP OBCP || OBCP || OBCP OBCP
n Task Manager (Lua (Lua e (Lua
. - Thread) Thread) Thread) Thread)
. Communication
s
Service [

Message
Service

TIME Service ‘

[|

MTL Service Lua Interpreter ‘
:
| Shediine oBer Run-Time Library (RTL
psaglr(:fcgs m "| scheduler y (RTL)

Interface Math COMM Message Data Access
Library

Library Library Library Library

Figure 3. OBCP Execution Environment

129

HOZMAATE =2 HOH HM4Z

1. OBCP Manager

The OBCP manager receives token codes of specified
OBCP through TC interface function in BSW and loads it.
It creates OBCP Control Block (OCB) from the header
data of OBCP in order to provide run-time information for
each OBCP. Static memory allocation mechanism is
implemented for OBCPs. Figure 4 shows the OBCP state
transition diagram. All OBCPs follow the same behavior
based on the following states.

An OBCP can be one of following states. Empty state
indicates that no OBCP is loaded with the given ID. The
ID can be used to load a new OBCP. Loading state is
transient state during the OBCP loading. The ID is
reserved, the memory requested by the OBCP is allocated,
the OBCP is not yet available for execution until it is fully
loaded and the loading is validated. Stopped state is that
the OBCP is not activated by the interpreter. Running
state is that the OBCP is activated by the interpreter.
Paused state is that the OBCP is paused, an OBCP can
enter this in order to wait for an external event before

resuming its execution.

Unload

Stopped

End Loading

Running

Unload Start Loading

Loading

Figure 4. OBCP State Diagram

2. OBCP Scheduler

The policy of OBCP scheduler is cyclic round-robin, so
the scheduler calls the OBCP interpreter to execute an
OBCP for each OBCP duration according to each OBCP’s
activation level and duration information which are stored
in each OCB. The OBCP can be executed on different
activation levels, high frequency (HF, 10Hz), normal
frequency (NF, 1Hz) and long frequency (LF, 0.1Hz). The
execution of an OBCP is performed cyclically according to
each OBCP'’s activation level. The execution time must be
controlled by its cyclic frequency and allocated execution
time in order to avoid a cyclic overload, so as not to
endanger the rest of the OBS. If a whole OBCP can’t be
executed on a single cycle, its execution is spread on

several consecutive cycles. The OBCP execution on one

cycle is limited for a maximum duration which is
predefined by writer of OBCP or user.

3. OBCP Language and Interpreter

In general, an interpreter has slow translation speed
compared to natively compiled code. So, we investigated
many interpreters of supporting script language.

Lua is a tiny script language and one of languages
which is easily embedded in C program. Due to its
simplicity and extensibility, Lua is widely ported to
multi-platform and software even embedded application.
Lua is embedded script engine and really lightweight: for
instance, on Linux its stand-alone interpreter, complete
with all standard libraries, take less than 150 Kbytes: the
core is less than 100 Kbytes[9]. Independent benchmark
shows Lua as one of the fastest language implementations
in the field of scripting languages[10]. Since Lua 5.0, Lua
employs register-based bytecode. It can leads to more
efficient interpretation due to fewer bytecode instructions
fetched for interpretation, reducing the fetch overhead
which is crucial to the interpreter performance. A
register-based instruction set architecture (ISA) leads to a
better performance than a stack—based ISA, because it can
remove many register moves corresponding to pushes and
pos in a stack-based ISA, reducing the number of
interpreted instructions[11].

We chose the Lua interpreter for OBCP execution
engine due to above advantages and it provides methods
for the execution and control of the OBCPs thanks to
existing functionalities in Lua script engine. Each thread
runs an instance of the interpreter in which the OBCPs
run, and typically one main OBCP runs on a separate
thread. So even if one of these threads fails, the execution
of the others continues. Of course, it is also possible to
stop or abort the execution of an OBCP via TC or events

as shown in Figure 4.

IV. Experiment Evaluation

This chapter describes the development environment
and experimental result. For the present work, we used
Lua 5.2 as a execution engine to implement the VM for the
OEE. Lua is free software distributed under the terms of
the MIT license. It is certified Open Source software. Its
license is simple and liberal and is compatible with GPL.

Since Lua 5.0, Lua employs the virtual register machine

130

MBBIAS /5t Lua QIEIZAlE|]3| THAHAL A7

instruction set and provides the interpreter. Table 2 shows
the software and hardware configuration for the
experiments and development environment. We use the
some of WCET benchmark programs for measurement of
the performance[12]. Methods are translated to Lua
programming codes and then they are executed on the

target processor specified in Table 2.

Table 2, Hardware and Software Configuration

Item Description
Processor LEONS-FT 25MHz
Real-Time OS RTEMS 4.10
Cross Compiler Sparc-rtems 4.4.6
Interpreter Lua 5.2
Debugger GRMON
Development Env. Eclipse IDE for C/C++

Figure 5 shows the OBS development environment. OBS
including OEE has been developed using Eclipse IDE. The
execution image is loaded and executed on target processor
by GRMON. We can validate the execution time using
GRMON.

Figure 5, OBS Development Environment

To measure the benchmark running times of the Lua
interpreter in OEE, we loads the benchmark programs on
the OEE and executes them by executing OBS. We
compare the performance of the Lua interpreter with using
cache or not and floating point unit (FPU) or not. There
are four results per each benchmark program. Table 3
shows the average execution time per one instruction.

In case of usage of cache, the OEE has an average
speedup of 2.8 on the execution time. In case of the usage
of FPU, it has an average speedup of 2.45 on the execution

time. When the cache and FPU are used at the same time,

131

it has an average speedup of 7.0 on the execution time.
The usage of cache and FPU has a great influence on the
execution time. We can validate that the best execution

time is an average 6.384 (usec) per one Lua instruction.

Table 3. Average execution time per one instruction (usec)

S FPU No FPU
Cache | No Cache Cache No Cache

sart 5.605 17.276 16.571 43.372
fac 6.187 18934 17.249 41.828
fftl 5984 17.909 20.930 51.225
fibcall 6.461 21.83% 12.883 39.012
insertsort 8795 26423 23.502 56.715
janne_cimplex 3.979 14.070 13.219 41.037
qurt 7431 21.857 21.191 52.992
recursion 6.673 19551 12.643 34.441
Average 6.384 19.732 17.273 45.078

‘II Il
8

Number of execution instructions per 1 msec
o)

‘I L] |I n
* &

A&

& & o

K &
\,,é‘

m‘ ‘ ‘ ‘ I
50
0 Il Il Il II [[
& > » &
Ty u & ‘(e@ z‘:"?

«

WFPUCache mFPU Mo Cache Mo FPU Cache m No FPU No Cache

Figure 6. Number of execution instructions during 1 msec.

Figure 6 shows the number of execution instructions
during 1 msec. It may be inferred from these data that the
minimum 114 instructions are executed during 1
millisecond if the cache and FPU are used at the same

time.

V. Conclusions

OBCP system enables autonomous operations without
ground contact in the field of deep space missions such as
Korea lunar explorer. OEE can be built as a form of the
VM in OBS. Interpreter is an execution engine of
interpreting and executing instructions in the VM. But
interpreter has slow translation speed compared to
natively compiled code. We adapted Lua interpreter with
good execution performance to execution engine in the
OEE and designed the overall of OEE. The development

HOZMAATE =2 HOH HM4Z

environment has been configured and built for
implementing OEE. OBS including OEE has been
developed, ported on hardware target and evaluated the
execution performance. We presented experimental results
for OEE based on the Lua interpreter.

We found that the execution time is an average 6.384
(usec) per one Lua instruction on the development
environment. In case of usage of cache, the OEE has an
aveage speedup of 2.8 on the execution time. In case of
the usage of the floating point unit, it has an average
speedup of 2.45 on the execution time. When the cache and
floating point unit are used at the same time, it has an
average speedup of 7.0 on the execution time. The usage
of cache and floating point unit has a great influence on
the execution time.

It is foreseen that the OEE for Korea lunar mission
provides means to control spacecraft through OBCP which
is script programs to be written in the Lua programming
language, compiled to token and executed by Lua
interpreter on-board. Because the creation and execution
of an OBCP is independent with OBS during the mission,
great flexibility, reduced development time and reduced
risk for mission operations can be achieved besides
adaptability to different missions and portability to
different processors and real-time operating systems. It
will be expected to use the developed OEE in the deep

space exploration missions.

REFERENCES

[1] C. Steiger, R. Furnell, and J. Morales, “OBSM Operations
Automation through the use of On-board Control
Procedures,” SpaceOps, May 2004.

[2] ECSS-E-ST-70-01C, “Spacecraft on-board procedures”,
ESA-ESTEC, April 2010.

[3] GM. Lautenschlager, A. Hefler, R. Eilenberger, and J.
Schandl, “The OBCP Concept used by ROSETTA”,
Proceedings of DASIA 2004, ESA SP-570, August 2004.

[4] C. Steiger, R. Furnell, and J. Morales, “On-Board Control
Procedures for ESA’s Deep Space Missions Rosetta and
Venus Express”, Proceedings of DASIA 2005, August 2005.

[5] F. Trifin, C. Steiger, A. Rudolph, and W.Heinen, “Simplying
On-Board Control Procedure Development: A Generic Tool
Based on ESOC Experience”, AIAA 2008-3543, June 2008.

[6] M. Ferraguto, T. Wittrock, M. Barrenscheen, M. Paakko, V.
Sipinen, “The On-Board Control Procedures Subsystem for
the Herschel and Planck Satellites”, Annual IEEE
International ~ Computer Software and Application
Conference, COMPSAC.2008.218, pp.136-1371, 2008.

[71 SY Kang, KH Yang and SB Choi, “IP function
development in COMS Flight Software”, International
Symposium on Remote Sensing, Jeju Korea, pp.171-174,
November 2007.

[8] SY Kang, B.G Park and KH Yang, “The On-Board
Software Function for Meteo-Imager Images Planning
Management in COMS”, International Symposium on
Remote Sensing, Jeju Korea, October 2010.

[9] R. Ierusalimschy, LH. de Figueiredo, W. Celes, “The
Implementation of Lua 5.0,” Journal of Universal Computer
Science 11 No.7, pp. 1159-1176, 2005

[10] D. Bagley. “The great computer language shootout.
http://www.bagley.org/~doug/shootout/

[11] Yunhe Shi, Kevin Casey, M.Anton Ertl, David Gregg
"Virtual Machine showdown: Stack versus registers” ACM
transactions on Architecture and Code Optimization
(TACO), Vol. 4, No. 4, Article 21, January 2008

[12]http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

X x}

Z &= H(Sooyeon Kang)

1994 2¢ : Fsdista AL
3t =Y

19969 2¢ : st AL
3t AAEY

19969 39 ~ A IAFA
T A

<HAEoR> Mt = A|2<8l Fault-Tolerant A12=§, HE

e

T & 3|(Cheolhea Koo)

<1997 29 gt WAk
ShALEY

1999 24 : it o] &Rk
sk AatEd]

<1999 1292 ~ @A =L
Ao AT

<HAROR> 1 914 heEslo], AZESO], B4 LREZ

Z & 8i(Gwanghyeok Ju)

<1985 29 AeEa 9T
St} shabESd

<1923 29 AeEtu 9T
st HAkEd

<2001 29 : Texas AGM #3953
BE L e

(20019 ~ A e AT Addr

<BARoR> 1 LT T, WFA, SFWAL

_i

132

- 2003 ~ 2004\3: Carnegie Mellon University Post Doc.

<2004y ~ —Eﬂxﬁ . iuh;ﬁt‘ﬂ—"r 7—1 “iailt‘ﬂ—jﬂr RA
<HAROR> 1 FFEF A wl, A AFE, Q= A
28 AT EY O

133

EIH2YEAN MSAS 25t Lua QB ZE|E 7|HHo| JHAHAl M7
8 A| &d(Sihyeong Park)
- 2014 © Feoista F3FE e ek g
AHEY
<2014 ~ @A St ZSTE
&Stk AAbabg
\ .
<FAEoE> 1 HtlE Al2H)
4 & M(Hyungshin Kim)
1990« F=raelyed dakeka) o
e
- 19913 : Univ. of Surrey, UK 9145
Alekst qArE4d
1992 ~ 2001« =) 9
AR AT
- 2003 : =Y HAET WatE

