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요  약 
본 논문에서는 탑재운영절차서 실행환경을 위한 Lua 인터프리터 기반의 가상머신 설계와 기능 및 성능분석 결과를 나타낸다. 한국

항공우주연구원에서 계획 중인 달 탐사 임무를 온보드상에서 자율적으로 운영하기 위해 탑재운영절차서 실행환경의 개발이 요구되

어졌다. 탑재운영절차서는 위성에 탑재되어 지상 간섭없이 자율적으로 임무 수행을 가능케 함으로써 전파 지연과 제한된 데이터 

통신용량을 갖는 심우주 임무들에서 이미 적용되고 있다. 가상머신의 실행엔진인 인터프리터는 고급언어로 작성된 원시코드를 한 

줄씩 번역하고 실행하므로 컴파일러에 의해 생성된 코드가 실행되는 것에 비해서 실행 속도가 현저하게 느리다. 이를 극복하기위해 

레지스터 기반의 Lua 인터프리터를 적용하여 탑재운영절차서 실행환경 설계 및 구현하였으며 실험을 통해 여러 요소들에 따른 성능 

분석을 수행하였다. 성능분석 결과는 탑재운영절차서 스케줄링 방안 뿐 아니라 Lua 인터프리터를 적용하는 시스템에 적용될 수 있

을 것으로 기대된다.

Key Words : On-Board Control Procedure (OBCP), OBCP Execution Environment (OEE), Virtual Machine, Lua interpreter, 
On-Board Software (OBS)

ABSTRACT
In this paper, we present the design, functions and performance analysis of the virtual machine (VM) based on the Lua 
interpreter for On-Board Control Procedure Execution Environment (OEE). The development of the OEE has been required 
in order to operate the lunar explorer mission autonomously which is planned by Korea Aerospace Research Institute (KARI) 
autonomously. The concept of On-Board Control Procedure (OBCP) is already being applied to the deep space missions with 
a long propagation delay and a limited data transmission capacity since it ensure he autonomy of the mission without the 
ground intervention. The interpreter is the execution engine in the VM and it interpreters high-level programming codes line 
by line and executes the VM instructions. So the execution speed is very more slower than that of natively compiled codes. 
In order to overcome it, we design and implement OEE using register-based Lua interpreter for execution engine in OEE. 
We present experimental results on a range of additional hardware configurations such as usages of cache and floating point 
unit. We expect those to utilized to the OBCP scheduling policy and the system with Lua interpreter.
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I. Introduction

In deep space missions like the lunar explorer, low SNR, 

and signal distortion, a high level of autonomy in the 

operations is required because contact time between space 

and ground is limited due to long propagation delay. 

Spacecraft operations are traditionally performed by 

using Flight Control Procedures (FCPs) and Mission Time 

Line (MTL). FCPs are executed step-by-step by a ground 

operator, which involves sending Telecommands (TC)s to 
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the spacecraft and checking Telemetry (TM) downlinked 

to ground. MTL is a sequence of time-tagged TC loaded 

from ground and executed by the OBS, and is planned to 

be executed when the time tag expires. While MTL allows 

for autonomous on-board TC execution, the concept is 

limited as it consists in concept of success-oriented 

commanding and it is nearly impossible to react 

immediately to unexpected behavior such as failed TC[1]. 

The complexity of the OBS is increased when autonomous 

capability is required to cope with non-nominal situations. 

Although such recovery function can be applied to the 

OBS on orbit through reload and patch from ground, it is 

clearly impractical and risky for the mission due to hazard 

and complexity coming from the operation. Further it is 

one of major reasons of that cost of ground operation is 

hard to be saved.

Figure 1. OBCP System [2]

As a solution to the above problems, ESA has 

introduces and released "Spacecraft On-Board Control 

Procedures" for space standardization in order to define 

the OBCP concept for the OBCP system that can be 

applied for any mission. It provides some sorts of 

functionalities that are useful for controlling the spacecraft 

through small script-like programs written in a specific 

language. The OBCP system consists of an OBCP 

preparation environment located on the ground and an 

OEE located on-board[2]. Figure 1 shows the OBCP 

system. After OBCPs are programmed, compiled on the 

OBCP preparation environment and uploaded on-board, 

they are handled by the OEE platform, which is 

responsible for loading, scheduling, executing, controlling 

and monitoring OBCPs. Particularly the OEE shall satisfy 

the reusability, the portability, the operability and the 

maintainability for the space mission systems in terms of 

lowering of complexity, handling un-expectation situation, 

performing deep space exploration, saving cost and short 

development period.

Therefore OBCPs can be used to implement 

functionality late in the project, when OBS is frozen and 

the modification of OBS is difficult to apply due to 

development schedule or cost. An amount of ground 

operations activities can be simplified or reduced by using 

OBCPs. For example a sequence uplink budget and the 

amount of MTL commands can be substituted by 

operations of OBCPs[3].

The rest of this paper is organized as follows. In section 

2, we describe the related projects which utilize the OBCP 

systems at their mission. In section 3, we introduce the 

design of the VM based on the Lua interpreter for the 

OEE of the OBCP system in order to meet the operational 

autonomy requirements and capabilities for the Korea 

lunar mission. In section 4, we present the experimental 

evaluation of our designed VM. Finally, in section 5, we 

conclude with a summary of our work presented in this 

paper. Figure 1. OBCP System[2]

Ⅱ. Related Works

The first ESA mission to fly OBCP-like facilities was 

the European Retrievable Carrier (EURECA) in 1992. 

Although EURECA was a mission in the earth orbit, 

limited ground station contact time demanded for a 

significant amount of spacecraft operations have been 

executed autonomously by OBCP[1]. Rosetta and Venus 

Express missions are successfully using OBCPs. The 

OBCP concept for Rosetta mission is based on the 

successful EURECA OBCP experience. As Rosetta 

encounters long propagation delays, unstable 

communication link and low data rates throughout the 

mission, advanced spacecraft is utilized, and it is achieved 

through OBCPs. Venus Express inherits major parts of the 

Rosetta data handling OBS, including the OBCP 

facility[1][4]. OBCPs embedded in Rosetta and Venus 

Express mission is written in Spacecraft Control 

Language (SCL) which is specially designed for simplicity 

and safety and is suitable for mission-critical applications. 

SCL is based on the syntax and semantic of Ada 83, 

which is a structured, strongly and statically typed 

imperative language[5]. The Herschel/Planck and GOCE 
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Rosetta Venus

Herschel,

Plank,

GOCE, 

Gala

COMS

Language SCL SCL OCL APL

Max.Code Size 8 Kb 4 Kb 64 Kb 16 Kw

Max.Num.of 

OBCPs 

concurrently 

running

20 10 16 21

Scheduling

Policy
NP RR NP RR  P&P NP RR

NP : Non-Preemptive, RR : Round-Robin 

P&P : Priority based Preemptive

Figure 3. OBCP Execution Environment

missions support another OBCP environment based on 

On-Board Command Language (OCL) to define the OBCP 

source code. OCL is similar but equal to ANSI C[6]. The 

OBCP concept has been applied for Communication Ocean 

Meteorological Satellite (COMS) mission. COMS is the 

first Korea multi-mission geostationary satellite. COMS 

has an Interpreter Program Environment (IPE) as a part 

of OBS. IPR takes charge of managing, scheduling and 

interpreting interpreted programs (IPs) written in 

Application Program Language (APL)[7][8].

Table 1. OBCP technologies and capabilities in Space 

Missions

Ⅲ. Related The virtual Machine for 

the OEE

OBS is composed of Basic Software (BSW), Application 

Software (ASW) and OEE. Figure 2 presents the general 

OBS architecture for OBCP.

OBS runs on the real hardware target processor (e.g. 

SPARC, PowerPC, etc.) with real-time operating system. 

OEE is a VM for supporting and managing OBCP 

functionalities. It provides the execution environment 

which is responsible for loading, scheduling, executing, 

controlling and monitoring OBCPs. OEE has three 

functions, which are OBCP manager, OBCP scheduler and 

OBCP interpreter. 

Figure 2. OBS Architecture for OBCP

The context in which the OBCP operates is shown in 

Figure 3. TCs and events from ground and other functions 

of OBS to OEE and a specific OBCP are processed by 

OBCP manager. OBCPs are executed by OBCP scheduler 

which is activated by scheduling tasks according to 

activation levels. The run-time library (RTL), which 

provides a set of functions mainly acting as interface to 

the BSW. These functions are used as library function in 

order to extend the Lua language. RTL is made of 

interface library, data access library, message library, 

communication interface library between OBCP and 

devices and error library.
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1. OBCP Manager 

The OBCP manager receives token codes of specified 

OBCP through TC interface function in BSW and loads it. 

It creates OBCP Control Block (OCB) from the header 

data of OBCP in order to provide run-time information for 

each OBCP. Static memory allocation mechanism is 

implemented for OBCPs. Figure 4 shows the OBCP state 

transition diagram. All OBCPs follow the same behavior 

based on the following states. 

An OBCP can be one of following states. Empty state 

indicates that no OBCP is loaded with the given ID. The 

ID can be used to load a new OBCP. Loading state is 

transient state during the OBCP loading. The ID is 

reserved, the memory requested by the OBCP is allocated, 

the OBCP is not yet available for execution until it is fully 

loaded and the loading is validated. Stopped state is that 

the OBCP is not activated by the interpreter. Running 

state is that the OBCP is activated by the interpreter. 

Paused state is that the OBCP is paused, an OBCP can 

enter this in order to wait for an external event before 

resuming its execution.

Figure 4. OBCP State Diagram

2. OBCP Scheduler 

The policy of OBCP scheduler is cyclic round-robin, so 

the scheduler calls the OBCP interpreter to execute an 

OBCP for each OBCP duration according to each OBCP's 

activation level and duration information which are stored 

in each OCB. The OBCP can be executed on different 

activation levels, high frequency (HF, 10Hz), normal 

frequency (NF, 1Hz) and long frequency (LF, 0.1Hz). The 

execution of an OBCP is performed cyclically according to 

each OBCP's activation level. The execution time must be 

controlled by its cyclic frequency and allocated execution 

time in order to avoid a cyclic overload, so as not to 

endanger the rest of the OBS. If a whole OBCP can't be 

executed on a single cycle, its execution is spread on 

several consecutive cycles. The OBCP execution on one 

cycle is limited for a maximum duration which is 

predefined by writer of OBCP or user.

3. OBCP Language and Interpreter

In general, an interpreter has slow translation speed 

compared to natively compiled code. So, we investigated 

many interpreters of supporting script language.

Lua is a tiny script language and one of languages 

which is easily embedded in C program. Due to its 

simplicity and extensibility, Lua is widely ported to 

multi-platform and software even embedded application. 

Lua is embedded script engine and really lightweight: for 

instance, on Linux its stand-alone interpreter, complete 

with all standard libraries, take less than 150 Kbytes: the 

core is less than 100 Kbytes[9]. Independent benchmark 

shows Lua as one of the fastest language implementations 

in the field of scripting languages[10]. Since Lua 5.0, Lua 

employs register-based bytecode. It can leads to more 

efficient interpretation due to fewer bytecode instructions 

fetched for interpretation, reducing the fetch overhead 

which is crucial to the interpreter performance. A 

register-based instruction set architecture (ISA) leads to a 

better performance than a stack-based ISA, because it can 

remove many register moves corresponding to pushes and 

pos in a stack-based ISA, reducing the number of 

interpreted instructions[11].

We chose the Lua interpreter for OBCP execution 

engine due to above advantages and it provides methods 

for the execution and control of the OBCPs thanks to 

existing functionalities in Lua script engine. Each thread 

runs an instance of the interpreter in which the OBCPs 

run, and typically one main OBCP runs on a separate 

thread. So even if one of these threads fails, the execution 

of the others continues. Of course, it is also possible to 

stop or abort the execution of an OBCP via TC or events 

as shown in Figure 4.

Ⅳ. Experiment Evaluation

This chapter describes the development environment 

and experimental result. For the present work, we used 

Lua 5.2 as a execution engine to implement the VM for the 

OEE. Lua is free software distributed under the terms of 

the MIT license. It is certified Open Source software. Its 

license is simple and liberal and is compatible with GPL. 

Since Lua 5.0, Lua employs the virtual register machine 
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Item Description

Processor LEON3-FT 25MHz

Real-Time OS RTEMS 4.10

Cross Compiler Sparc-rtems 4.4.6

Interpreter Lua 5.2

Debugger GRMON

Development Env. Eclipse IDE for C/C++

Table 2. Hardware and Software Configuration

instruction set and provides the interpreter. Table 2 shows 

the software and hardware configuration for the 

experiments and development environment. We use the 

some of WCET benchmark programs for measurement of 

the performance[12]. Methods are translated to Lua 

programming codes and then they are executed on the 

target processor specified in Table 2. 

Figure 5 shows the OBS development environment. OBS 

including OEE has been developed using Eclipse IDE. The 

execution image is loaded and executed on target processor 

by GRMON. We can validate the execution time using 

GRMON.

Figure 5. OBS Development Environment

To measure the benchmark running times of the Lua 

interpreter in OEE, we loads the benchmark programs on 

the OEE and executes them by executing OBS. We 

compare the performance of the Lua interpreter with using 

cache or not and floating point unit (FPU) or not. There 

are four results per each benchmark program. Table 3 

shows the average execution time per one instruction.

In case of usage of cache, the OEE has an average 

speedup of 2.8  on the execution time. In case of the usage 

of FPU, it has an average speedup of 2.45 on the execution 

time. When the cache and FPU are used at the same time, 

it has an average speedup of 7.0 on the execution time. 

The usage of cache and FPU has a great influence on the 

execution time. We can validate that the best execution 

time is an average 6.384 (µsec) per one Lua instruction. 

Benchmarks
FPU No FPU

Cache No Cache Cache No Cache

sqrt 5.605 17.276 16.571 43.372

fac 6.187 18.934 17.249 41.828

fft1 5.984 17.909 20.930 51.225

fibcall 6.461 21.835 12.883 39.012

insertsort 8.755 26.423 23.502 56.715

janne_cimplex 3.979 14.070 13.219 41.037

qurt 7.431 21.857 21.191 52.992

recursion 6.673 19.551 12.643 34.441

Average 6.384 19.732 17.273 45.078

Table 3. Average execution time per one instruction (µsec)

Figure 6. Number of execution instructions during 1 msec. 

Figure 6 shows the number of execution instructions 

during 1 msec. It may be inferred from these data that the 

minimum 114 instructions are executed during 1 

millisecond if the cache and FPU are used at the same 

time.

V. Conclusions

OBCP system enables autonomous operations without 

ground contact in the field of deep space missions such as 

Korea lunar explorer. OEE can be built as a form of the 

VM in OBS. Interpreter is an execution engine of 

interpreting and executing instructions in the VM. But 

interpreter has slow translation speed compared to 

natively compiled code. We adapted Lua interpreter with 

good execution performance to execution engine in the 

OEE and designed the overall of OEE. The development 
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environment has been configured and built for 

implementing OEE. OBS including OEE has been 

developed, ported on hardware target and evaluated the 

execution performance. We presented experimental results 

for OEE based on the Lua interpreter.

We found that the execution time is an average 6.384 

(µsec) per one Lua instruction on the development 

environment. In case of usage of cache, the OEE has an 

aveage speedup of 2.8  on the execution time. In case of 

the usage of the floating point unit, it has an average 

speedup of 2.45 on the execution time. When the cache and 

floating point unit are used at the same time, it has an 

average speedup of 7.0 on the execution time. The usage 

of cache and floating point unit has a great influence on 

the execution time.

It is foreseen that the OEE for Korea lunar mission 

provides means to control spacecraft through OBCP which 

is script programs to be written in the Lua programming 

language, compiled to token and executed by Lua 

interpreter on-board. Because the creation and execution 

of an OBCP is independent with OBS during the mission, 

great flexibility, reduced development time and reduced 

risk for mission operations can be achieved besides 

adaptability to different missions and portability to 

different processors and real-time operating systems. It 

will be expected to use the developed OEE in the deep 

space exploration missions. 
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