
127

탑재운영절차서 실행환경을 위한 Lua 인터프리터 기반의

가상머신 설계

 강수연* 정회원, 구철회**, 주광혁***, 박시형****, 김형신****

Design of a Virtual Machine based on the Lua interpreter for the
On-Board Control Procedure Execution Environment

Sooyeon Kang* Regular Member, Cheolhea Koo**, Gwanghyeok Ju***, Sihyeong Park****, Hyungshin Kim****

요 약
본 논문에서는 탑재운영절차서 실행환경을 위한 Lua 인터프리터 기반의 가상머신 설계와 기능 및 성능분석 결과를 나타낸다. 한국

항공우주연구원에서 계획 중인 달 탐사 임무를 온보드상에서 자율적으로 운영하기 위해 탑재운영절차서 실행환경의 개발이 요구되

어졌다. 탑재운영절차서는 위성에 탑재되어 지상 간섭없이 자율적으로 임무 수행을 가능케 함으로써 전파 지연과 제한된 데이터

통신용량을 갖는 심우주 임무들에서 이미 적용되고 있다. 가상머신의 실행엔진인 인터프리터는 고급언어로 작성된 원시코드를 한

줄씩 번역하고 실행하므로 컴파일러에 의해 생성된 코드가 실행되는 것에 비해서 실행 속도가 현저하게 느리다. 이를 극복하기위해

레지스터 기반의 Lua 인터프리터를 적용하여 탑재운영절차서 실행환경 설계 및 구현하였으며 실험을 통해 여러 요소들에 따른 성능

분석을 수행하였다. 성능분석 결과는 탑재운영절차서 스케줄링 방안 뿐 아니라 Lua 인터프리터를 적용하는 시스템에 적용될 수 있

을 것으로 기대된다.

Key Words : On-Board Control Procedure (OBCP), OBCP Execution Environment (OEE), Virtual Machine, Lua interpreter,
On-Board Software (OBS)

ABSTRACT
In this paper, we present the design, functions and performance analysis of the virtual machine (VM) based on the Lua
interpreter for On-Board Control Procedure Execution Environment (OEE). The development of the OEE has been required
in order to operate the lunar explorer mission autonomously which is planned by Korea Aerospace Research Institute (KARI)
autonomously. The concept of On-Board Control Procedure (OBCP) is already being applied to the deep space missions with
a long propagation delay and a limited data transmission capacity since it ensure he autonomy of the mission without the
ground intervention. The interpreter is the execution engine in the VM and it interpreters high-level programming codes line
by line and executes the VM instructions. So the execution speed is very more slower than that of natively compiled codes.
In order to overcome it, we design and implement OEE using register-based Lua interpreter for execution engine in OEE.
We present experimental results on a range of additional hardware configurations such as usages of cache and floating point
unit. We expect those to utilized to the OBCP scheduling policy and the system with Lua interpreter.

*한국항공우주연구원 위성비행소프트웨어팀 (sykang@kari.re.kr)
한국항공우주연구원 달탐사기술팀 (chkoo@kari.re.kr), *한국항공우주연구원 달탐사연구실 (ghju@kari.re.kr),
****충남대학교 컴퓨터공학과 임베디드 시스템연구실 (sihyeong@cnu.ac.kr, hyungshin@cnu.ac.kr)
접수일자 : 2014년 12월 11일, 수정완료일자 : 2014년 12월 22일, 최종게재확정일자 : 2014년 12월 22일

I. Introduction

In deep space missions like the lunar explorer, low SNR,

and signal distortion, a high level of autonomy in the

operations is required because contact time between space

and ground is limited due to long propagation delay.

Spacecraft operations are traditionally performed by

using Flight Control Procedures (FCPs) and Mission Time

Line (MTL). FCPs are executed step-by-step by a ground

operator, which involves sending Telecommands (TC)s to

통신위성우주산업연구회논문지 제9권 제4호 (K9-4-24)

통신위성우주산업연구회논문지 제9권 제4호

128

the spacecraft and checking Telemetry (TM) downlinked

to ground. MTL is a sequence of time-tagged TC loaded

from ground and executed by the OBS, and is planned to

be executed when the time tag expires. While MTL allows

for autonomous on-board TC execution, the concept is

limited as it consists in concept of success-oriented

commanding and it is nearly impossible to react

immediately to unexpected behavior such as failed TC[1].

The complexity of the OBS is increased when autonomous

capability is required to cope with non-nominal situations.

Although such recovery function can be applied to the

OBS on orbit through reload and patch from ground, it is

clearly impractical and risky for the mission due to hazard

and complexity coming from the operation. Further it is

one of major reasons of that cost of ground operation is

hard to be saved.

Figure 1. OBCP System [2]

As a solution to the above problems, ESA has

introduces and released "Spacecraft On-Board Control

Procedures" for space standardization in order to define

the OBCP concept for the OBCP system that can be

applied for any mission. It provides some sorts of

functionalities that are useful for controlling the spacecraft

through small script-like programs written in a specific

language. The OBCP system consists of an OBCP

preparation environment located on the ground and an

OEE located on-board[2]. Figure 1 shows the OBCP

system. After OBCPs are programmed, compiled on the

OBCP preparation environment and uploaded on-board,

they are handled by the OEE platform, which is

responsible for loading, scheduling, executing, controlling

and monitoring OBCPs. Particularly the OEE shall satisfy

the reusability, the portability, the operability and the

maintainability for the space mission systems in terms of

lowering of complexity, handling un-expectation situation,

performing deep space exploration, saving cost and short

development period.

Therefore OBCPs can be used to implement

functionality late in the project, when OBS is frozen and

the modification of OBS is difficult to apply due to

development schedule or cost. An amount of ground

operations activities can be simplified or reduced by using

OBCPs. For example a sequence uplink budget and the

amount of MTL commands can be substituted by

operations of OBCPs[3].

The rest of this paper is organized as follows. In section

2, we describe the related projects which utilize the OBCP

systems at their mission. In section 3, we introduce the

design of the VM based on the Lua interpreter for the

OEE of the OBCP system in order to meet the operational

autonomy requirements and capabilities for the Korea

lunar mission. In section 4, we present the experimental

evaluation of our designed VM. Finally, in section 5, we

conclude with a summary of our work presented in this

paper. Figure 1. OBCP System[2]

Ⅱ. Related Works

The first ESA mission to fly OBCP-like facilities was

the European Retrievable Carrier (EURECA) in 1992.

Although EURECA was a mission in the earth orbit,

limited ground station contact time demanded for a

significant amount of spacecraft operations have been

executed autonomously by OBCP[1]. Rosetta and Venus

Express missions are successfully using OBCPs. The

OBCP concept for Rosetta mission is based on the

successful EURECA OBCP experience. As Rosetta

encounters long propagation delays, unstable

communication link and low data rates throughout the

mission, advanced spacecraft is utilized, and it is achieved

through OBCPs. Venus Express inherits major parts of the

Rosetta data handling OBS, including the OBCP

facility[1][4]. OBCPs embedded in Rosetta and Venus

Express mission is written in Spacecraft Control

Language (SCL) which is specially designed for simplicity

and safety and is suitable for mission-critical applications.

SCL is based on the syntax and semantic of Ada 83,

which is a structured, strongly and statically typed

imperative language[5]. The Herschel/Planck and GOCE

탑재운영절차서 실행환경을 위한 Lua 인터프리터 기반의 가상머신 설계

129

Rosetta Venus

Herschel,

Plank,

GOCE,

Gala

COMS

Language SCL SCL OCL APL

Max.Code Size 8 Kb 4 Kb 64 Kb 16 Kw

Max.Num.of

OBCPs

concurrently

running

20 10 16 21

Scheduling

Policy
NP RR NP RR P&P NP RR

NP : Non-Preemptive, RR : Round-Robin

P&P : Priority based Preemptive

Figure 3. OBCP Execution Environment

missions support another OBCP environment based on

On-Board Command Language (OCL) to define the OBCP

source code. OCL is similar but equal to ANSI C[6]. The

OBCP concept has been applied for Communication Ocean

Meteorological Satellite (COMS) mission. COMS is the

first Korea multi-mission geostationary satellite. COMS

has an Interpreter Program Environment (IPE) as a part

of OBS. IPR takes charge of managing, scheduling and

interpreting interpreted programs (IPs) written in

Application Program Language (APL)[7][8].

Table 1. OBCP technologies and capabilities in Space

Missions

Ⅲ. Related The virtual Machine for

the OEE

OBS is composed of Basic Software (BSW), Application

Software (ASW) and OEE. Figure 2 presents the general

OBS architecture for OBCP.

OBS runs on the real hardware target processor (e.g.

SPARC, PowerPC, etc.) with real-time operating system.

OEE is a VM for supporting and managing OBCP

functionalities. It provides the execution environment

which is responsible for loading, scheduling, executing,

controlling and monitoring OBCPs. OEE has three

functions, which are OBCP manager, OBCP scheduler and

OBCP interpreter.

Figure 2. OBS Architecture for OBCP

The context in which the OBCP operates is shown in

Figure 3. TCs and events from ground and other functions

of OBS to OEE and a specific OBCP are processed by

OBCP manager. OBCPs are executed by OBCP scheduler

which is activated by scheduling tasks according to

activation levels. The run-time library (RTL), which

provides a set of functions mainly acting as interface to

the BSW. These functions are used as library function in

order to extend the Lua language. RTL is made of

interface library, data access library, message library,

communication interface library between OBCP and

devices and error library.

통신위성우주산업연구회논문지 제9권 제4호

130

1. OBCP Manager

The OBCP manager receives token codes of specified

OBCP through TC interface function in BSW and loads it.

It creates OBCP Control Block (OCB) from the header

data of OBCP in order to provide run-time information for

each OBCP. Static memory allocation mechanism is

implemented for OBCPs. Figure 4 shows the OBCP state

transition diagram. All OBCPs follow the same behavior

based on the following states.

An OBCP can be one of following states. Empty state

indicates that no OBCP is loaded with the given ID. The

ID can be used to load a new OBCP. Loading state is

transient state during the OBCP loading. The ID is

reserved, the memory requested by the OBCP is allocated,

the OBCP is not yet available for execution until it is fully

loaded and the loading is validated. Stopped state is that

the OBCP is not activated by the interpreter. Running

state is that the OBCP is activated by the interpreter.

Paused state is that the OBCP is paused, an OBCP can

enter this in order to wait for an external event before

resuming its execution.

Figure 4. OBCP State Diagram

2. OBCP Scheduler

The policy of OBCP scheduler is cyclic round-robin, so

the scheduler calls the OBCP interpreter to execute an

OBCP for each OBCP duration according to each OBCP's

activation level and duration information which are stored

in each OCB. The OBCP can be executed on different

activation levels, high frequency (HF, 10Hz), normal

frequency (NF, 1Hz) and long frequency (LF, 0.1Hz). The

execution of an OBCP is performed cyclically according to

each OBCP's activation level. The execution time must be

controlled by its cyclic frequency and allocated execution

time in order to avoid a cyclic overload, so as not to

endanger the rest of the OBS. If a whole OBCP can't be

executed on a single cycle, its execution is spread on

several consecutive cycles. The OBCP execution on one

cycle is limited for a maximum duration which is

predefined by writer of OBCP or user.

3. OBCP Language and Interpreter

In general, an interpreter has slow translation speed

compared to natively compiled code. So, we investigated

many interpreters of supporting script language.

Lua is a tiny script language and one of languages

which is easily embedded in C program. Due to its

simplicity and extensibility, Lua is widely ported to

multi-platform and software even embedded application.

Lua is embedded script engine and really lightweight: for

instance, on Linux its stand-alone interpreter, complete

with all standard libraries, take less than 150 Kbytes: the

core is less than 100 Kbytes[9]. Independent benchmark

shows Lua as one of the fastest language implementations

in the field of scripting languages[10]. Since Lua 5.0, Lua

employs register-based bytecode. It can leads to more

efficient interpretation due to fewer bytecode instructions

fetched for interpretation, reducing the fetch overhead

which is crucial to the interpreter performance. A

register-based instruction set architecture (ISA) leads to a

better performance than a stack-based ISA, because it can

remove many register moves corresponding to pushes and

pos in a stack-based ISA, reducing the number of

interpreted instructions[11].

We chose the Lua interpreter for OBCP execution

engine due to above advantages and it provides methods

for the execution and control of the OBCPs thanks to

existing functionalities in Lua script engine. Each thread

runs an instance of the interpreter in which the OBCPs

run, and typically one main OBCP runs on a separate

thread. So even if one of these threads fails, the execution

of the others continues. Of course, it is also possible to

stop or abort the execution of an OBCP via TC or events

as shown in Figure 4.

Ⅳ. Experiment Evaluation

This chapter describes the development environment

and experimental result. For the present work, we used

Lua 5.2 as a execution engine to implement the VM for the

OEE. Lua is free software distributed under the terms of

the MIT license. It is certified Open Source software. Its

license is simple and liberal and is compatible with GPL.

Since Lua 5.0, Lua employs the virtual register machine

탑재운영절차서 실행환경을 위한 Lua 인터프리터 기반의 가상머신 설계

131

Item Description

Processor LEON3-FT 25MHz

Real-Time OS RTEMS 4.10

Cross Compiler Sparc-rtems 4.4.6

Interpreter Lua 5.2

Debugger GRMON

Development Env. Eclipse IDE for C/C++

Table 2. Hardware and Software Configuration

instruction set and provides the interpreter. Table 2 shows

the software and hardware configuration for the

experiments and development environment. We use the

some of WCET benchmark programs for measurement of

the performance[12]. Methods are translated to Lua

programming codes and then they are executed on the

target processor specified in Table 2.

Figure 5 shows the OBS development environment. OBS

including OEE has been developed using Eclipse IDE. The

execution image is loaded and executed on target processor

by GRMON. We can validate the execution time using

GRMON.

Figure 5. OBS Development Environment

To measure the benchmark running times of the Lua

interpreter in OEE, we loads the benchmark programs on

the OEE and executes them by executing OBS. We

compare the performance of the Lua interpreter with using

cache or not and floating point unit (FPU) or not. There

are four results per each benchmark program. Table 3

shows the average execution time per one instruction.

In case of usage of cache, the OEE has an average

speedup of 2.8 on the execution time. In case of the usage

of FPU, it has an average speedup of 2.45 on the execution

time. When the cache and FPU are used at the same time,

it has an average speedup of 7.0 on the execution time.

The usage of cache and FPU has a great influence on the

execution time. We can validate that the best execution

time is an average 6.384 (µsec) per one Lua instruction.

Benchmarks
FPU No FPU

Cache No Cache Cache No Cache

sqrt 5.605 17.276 16.571 43.372

fac 6.187 18.934 17.249 41.828

fft1 5.984 17.909 20.930 51.225

fibcall 6.461 21.835 12.883 39.012

insertsort 8.755 26.423 23.502 56.715

janne_cimplex 3.979 14.070 13.219 41.037

qurt 7.431 21.857 21.191 52.992

recursion 6.673 19.551 12.643 34.441

Average 6.384 19.732 17.273 45.078

Table 3. Average execution time per one instruction (µsec)

Figure 6. Number of execution instructions during 1 msec.

Figure 6 shows the number of execution instructions

during 1 msec. It may be inferred from these data that the

minimum 114 instructions are executed during 1

millisecond if the cache and FPU are used at the same

time.

V. Conclusions

OBCP system enables autonomous operations without

ground contact in the field of deep space missions such as

Korea lunar explorer. OEE can be built as a form of the

VM in OBS. Interpreter is an execution engine of

interpreting and executing instructions in the VM. But

interpreter has slow translation speed compared to

natively compiled code. We adapted Lua interpreter with

good execution performance to execution engine in the

OEE and designed the overall of OEE. The development

통신위성우주산업연구회논문지 제9권 제4호

132

environment has been configured and built for

implementing OEE. OBS including OEE has been

developed, ported on hardware target and evaluated the

execution performance. We presented experimental results

for OEE based on the Lua interpreter.

We found that the execution time is an average 6.384

(µsec) per one Lua instruction on the development

environment. In case of usage of cache, the OEE has an

aveage speedup of 2.8 on the execution time. In case of

the usage of the floating point unit, it has an average

speedup of 2.45 on the execution time. When the cache and

floating point unit are used at the same time, it has an

average speedup of 7.0 on the execution time. The usage

of cache and floating point unit has a great influence on

the execution time.

It is foreseen that the OEE for Korea lunar mission

provides means to control spacecraft through OBCP which

is script programs to be written in the Lua programming

language, compiled to token and executed by Lua

interpreter on-board. Because the creation and execution

of an OBCP is independent with OBS during the mission,

great flexibility, reduced development time and reduced

risk for mission operations can be achieved besides

adaptability to different missions and portability to

different processors and real-time operating systems. It

will be expected to use the developed OEE in the deep

space exploration missions.

REFERENCES

[1] C. Steiger, R. Furnell, and J. Morales, “OBSM Operations

Automation through the use of On-board Control

Procedures," SpaceOps, May 2004.

[2] ECSS-E-ST-70-01C, “Spacecraft on-board procedures”,

ESA-ESTEC, April 2010.

[3] G.M. Lautenschläger, A. Hefler, R. Eilenberger, and J.

Schandl, “The OBCP Concept used by ROSETTA”,

Proceedings of DASIA 2004, ESA SP-570, August 2004.

[4] C. Steiger, R. Furnell, and J. Morales, “On-Board Control

Procedures for ESA's Deep Space Missions Rosetta and

Venus Express", Proceedings of DASIA 2005, August 2005.

[5] F. Trifin, C. Steiger, A. Rudolph, and W.Heinen, “Simplying

On-Board Control Procedure Development: A Generic Tool

Based on ESOC Experience”, AIAA 2008-3543, June 2008.

[6] M. Ferraguto, T. Wittrock, M. Barrenscheen, M. Paakko, V.

Sipinen, “The On-Board Control Procedures Subsystem for

the Herschel and Planck Satellites”, Annual IEEE

International Computer Software and Application

Conference, COMPSAC.2008.218, pp.136-1371, 2008.

[7] S.Y Kang, K.H Yang and S.B Choi, “IP function

development in COMS Flight Software”, International

Symposium on Remote Sensing, Jeju Korea, pp.171-174,

November 2007.

[8] S.Y Kang, B.G Park and K.H Yang, “The On-Board

Software Function for Meteo-Imager Images Planning

Management in COMS”, International Symposium on

Remote Sensing, Jeju Korea, October 2010.

[9] R. Ierusalimschy, L.H. de Figueiredo, W. Celes, “The

Implementation of Lua 5.0,” Journal of Universal Computer

Science 11 No.7, pp. 1159-1176, 2005

[10] D. Bagley. “The great computer language shootout.

http://www.bagley.org/~doug/shootout/

[11] Yunhe Shi, Kevin Casey, M.Anton Ertl, David Gregg

"Virtual Machine showdown: Stack versus registers" ACM

transactions on Architecture and Code Optimization

(TACO), Vol. 4, No. 4, Article 21, January 2008

[12]http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

저자

강 수 연(Sooyeon Kang) 정회원

․1994년 2월：경희대학교 전자계산공

학 학사졸업

․1996년 2월：경희대학교 전자계산공

학 석사졸업

․1996년 3월 ∼ 현재：한국항공우주연

구원 선임연구원

 <관심분야> : 임베디드 시스템, Fault-Tolerant 시스템, 병렬

처리

구 철 회(Cheolhea Koo)
․1997년 2월：충남대학교 전자공학과

학사졸업

․1999년 2월：충남대학교 의용전자공

학과 석사졸업

․1999년 12월 ∼ 현재：한국항공우주

연구원 선임연구원

 <관심분야> : 위성 하드웨어, 소프트웨어, 통신 프로토콜

주 광 혁(Gwanghyeok Ju)
․1985년 2월：서울대학교 항공우주공

학과 학사졸업

․1992년 2월：서울대학교 항공우주공

학과 석사졸업

․2001년 2월：Texas A&M 항공우주공

학과 박사졸업

․2001년 ∼ 현재：한국항공우주연구원 책임연구원

 <관심분야> : 항공우주 공학, 별추적, 우주탐사

탑재운영절차서 실행환경을 위한 Lua 인터프리터 기반의 가상머신 설계

133

박 시 형(Sihyeong Park)
․2014년：충남대학교 컴퓨터공학과 학

사졸업

․2014년 ∼ 현재：충남대학교 컴퓨터

공학과 석사과정

 <관심분야> : 임베디드 시스템

김 형 신(Hyungshin Kim)
․1990년：한국과학기술원 전산학과 학

사 졸업

․1991년：Univ. of Surrey, U.K 위성통

신학과 석사졸업

․1992년 ∼ 2001년：한국과학기술원 인

공위성센터 선임연구원

․2003년：한국과학기술원 전산학과 박사졸업

․2003년 ∼ 2004년: Carnegie Mellon University Post Doc.

․2004년 ∼ 현재：충남대학교 컴퓨터공학과 교수

 <관심분야> : 항공우주 시스템, 저전력 컴퓨팅, 임베디드 시

스템 소프트웨어

