• Title/Summary/Keyword: Video Clustering

Search Result 125, Processing Time 0.027 seconds

An Energy-Aware Cooperative Communication Scheme for Wireless Multimedia Sensor Networks (무선 멀티미디어 센서 네트워크에서 에너지 효율적인 협력 통신 방법)

  • Kim, Jeong-Oh;Kim, Hyunduk;Choi, Wonik
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.671-680
    • /
    • 2015
  • Numerous clustering schemes have been proposed to increase energy efficiency in wireless sensor networks. Clustering schemes consist of a hierarchical structure in the sensor network to aggregate and transmit data. However, existing clustering schemes are not suitable for use in wireless multimedia sensor networks because they consume a large quantity of energy and have extremely short lifetime. To address this problem, we propose the Energy-Aware Cooperative Communication (EACC) method which is a novel cooperative clustering method that systematically adapts to various types of multimedia data including images and video. An evaluation of its performance shows that the proposed method is up to 2.5 times more energy-efficient than the existing clustering schemes.

An Improved key Frame Selection Algorithm Based on Histogram Difference Between Frames (프레임간 히스토그램 차이를 이용한 개선된 대표프레임 추출 알고리즘)

  • 정지현;전승철;박성한
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.137-140
    • /
    • 2000
  • In this paper, we propose as new algorithm for the selection of key frames in a given video. For the selected key frames to be well defined, the selected key frames need to spread out on the whole temporal domain of the given video and guaranteed not to be duplicate. For this purpose, we take the first frame of each shot of the video as the candidate key frame to represent the video. To reduce the overall processing time, we eliminate some candidate key frames which are visually indistinct in the histogram difference. The key frames are then selected using a clustering processing based on the singly linked hierarchical tree. To make the selected key frames be distributed evenly on the whole video, the deviation and time difference between the selected key frames are used. The simulation results demonstrate that our method provides the better performance compared with previous methods.

  • PDF

Text Region Detection Method in Mobile Phone Video (휴대전화 동영상에서의 문자 영역 검출 방법)

  • Lee, Hoon-Jae;Sull, Sang-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.192-198
    • /
    • 2010
  • With the popularization of the mobile phone with a built-in camera, there are a lot of effort to provide useful information to users by detecting and recognizing the text in the video which is captured by the camera in mobile phone, and there is a need to detect the text regions in such mobile phone video. In this paper, we propose a method to detect the text regions in the mobile phone video. We employ morphological operation as a preprocessing and obtain binarized image using modified k-means clustering. After that, candidate text regions are obtained by applying connected component analysis and general text characteristic analysis. In addition, we increase the precision of the text detection by examining the frequency of the candidate regions. Experimental results show that the proposed method detects the text regions in the mobile phone video with high precision and recall.

Similar Video Detection Method with Summarized Video Image and PCA (요약 비디오 영상과 PCA를 이용한 유사비디오 검출 기법)

  • Yoo, Jae-Man;Kim, Woo-Saeng
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.8
    • /
    • pp.1134-1141
    • /
    • 2005
  • With ever more popularity of video web-publishing, popular content is being compressed, reformatted and modified, resulting in excessive content duplication. Such overlapped data can cause problem of search speed and rate of searching. However, duplicated data on other site can provide alternatives while specific site cause problem. This paper proposes the efficient method, for retrieving. similar video data in large database. In this research we have used the method to compare summarized video image instead of the raw video data, and detected similar videos through clustering in that dimension feature vector through PCA(principle component analysis). We show that our proposed method is efficient and accurate through our experiment.

  • PDF

The Abstraction Retrieval System of Cultural Videos using Scene Change Detection (장면전환검출을 이용한 교양비디오 개요 검색 시스템)

  • Kang Oh-Hyung;Lee Ji-Hyun;Rhee Yang-Won
    • The KIPS Transactions:PartB
    • /
    • v.12B no.7 s.103
    • /
    • pp.761-766
    • /
    • 2005
  • This paper proposes a video model for the implementation of the cultural video database system. We have utilized an efficient scene change detection method that segments cultural video into semantic units for efficient indexing and retrieval of video. Since video has a large volume and needs to be played for a longer time, it implies difficulty of viewing the entire video. To solve this Problem. the cultural video abstraction was made to save the time and widen the choices of video the video abstract is the summarization of scenes, which includes important events produced by setting up the abstraction rule.

Automatic Poster Generation System Using Protagonist Face Analysis

  • Yeonhwi You;Sungjung Yong;Hyogyeong Park;Seoyoung Lee;Il-Young Moon
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.287-293
    • /
    • 2023
  • With the rapid development of domestic and international over-the-top markets, a large amount of video content is being created. As the volume of video content increases, consumers tend to increasingly check data concerning the videos before watching them. To address this demand, video summaries in the form of plot descriptions, thumbnails, posters, and other formats are provided to consumers. This study proposes an approach that automatically generates posters to effectively convey video content while reducing the cost of video summarization. In the automatic generation of posters, face recognition and clustering are used to gather and classify character data, and keyframes from the video are extracted to learn the overall atmosphere of the video. This study used the facial data of the characters and keyframes as training data and employed technologies such as DreamBooth, a text-to-image generation model, to automatically generate video posters. This process significantly reduces the time and cost of video-poster production.

Online Video Synopsis via Multiple Object Detection

  • Lee, JaeWon;Kim, DoHyeon;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.8
    • /
    • pp.19-28
    • /
    • 2019
  • In this paper, an online video summarization algorithm based on multiple object detection is proposed. As crime has been on the rise due to the recent rapid urbanization, the people's appetite for safety has been growing and the installation of surveillance cameras such as a closed-circuit television(CCTV) has been increasing in many cities. However, it takes a lot of time and labor to retrieve and analyze a huge amount of video data from numerous CCTVs. As a result, there is an increasing demand for intelligent video recognition systems that can automatically detect and summarize various events occurring on CCTVs. Video summarization is a method of generating synopsis video of a long time original video so that users can watch it in a short time. The proposed video summarization method can be divided into two stages. The object extraction step detects a specific object in the video and extracts a specific object desired by the user. The video summary step creates a final synopsis video based on the objects extracted in the previous object extraction step. While the existed methods do not consider the interaction between objects from the original video when generating the synopsis video, in the proposed method, new object clustering algorithm can effectively maintain interaction between objects in original video in synopsis video. This paper also proposed an online optimization method that can efficiently summarize the large number of objects appearing in long-time videos. Finally, Experimental results show that the performance of the proposed method is superior to that of the existing video synopsis algorithm.

A News Video Mining based on Multi-modal Approach and Text Mining (멀티모달 방법론과 텍스트 마이닝 기반의 뉴스 비디오 마이닝)

  • Lee, Han-Sung;Im, Young-Hee;Yu, Jae-Hak;Oh, Seung-Geun;Park, Dai-Hee
    • Journal of KIISE:Databases
    • /
    • v.37 no.3
    • /
    • pp.127-136
    • /
    • 2010
  • With rapid growth of information and computer communication technologies, the numbers of digital documents including multimedia data have been recently exploded. In particular, news video database and news video mining have became the subject of extensive research, to develop effective and efficient tools for manipulation and analysis of news videos, because of their information richness. However, many research focus on browsing, retrieval and summarization of news videos. Up to date, it is a relatively early state to discover and to analyse the plentiful latent semantic knowledge from news videos. In this paper, we propose the news video mining system based on multi-modal approach and text mining, which uses the visual-textual information of news video clips and their scripts. The proposed system systematically constructs a taxonomy of news video stories in automatic manner with hierarchical clustering algorithm which is one of text mining methods. Then, it multilaterally analyzes the topics of news video stories by means of time-cluster trend graph, weighted cluster growth index, and network analysis. To clarify the validity of our approach, we analyzed the news videos on "The Second Summit of South and North Korea in 2007".

Mean-Shift Blob Clustering and Tracking for Traffic Monitoring System

  • Choi, Jae-Young;Yang, Young-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.3
    • /
    • pp.235-243
    • /
    • 2008
  • Object tracking is a common vision task to detect and trace objects between consecutive frames. It is also important for a variety of applications such as surveillance, video based traffic monitoring system, and so on. An efficient moving vehicle clustering and tracking algorithm suitable for traffic monitoring system is proposed in this paper. First, automatic background extraction method is used to get a reliable background as a reference. The moving blob(object) is then separated from the background by mean shift method. Second, the scale invariant feature based method extracts the salient features from the clustered foreground blob. It is robust to change the illumination, scale, and affine shape. The simulation results on various road situations demonstrate good performance achieved by proposed method.

Interactive Region Segmentation Method Using Agglomerative Clustering

  • Park, Sanghyun
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.89-99
    • /
    • 2018
  • Due to global warming, various natural disasters such as floods and droughts are increasing. If we can detect the possibility of natural disasters in advance, we can prevent massive damages caused by natural disasters. Recent advances in visual sensor technologies have enabled remote monitoring of a variety of natural environments, including lakes, rivers, and shores. In this paper, we propose a method to segment an image obtained from video sensor networks into regions in order to monitor the environment effectively. In the proposed method, we first partition the image into superpixels and model the connections between superpixels as a graph. Then, initial seeds for each region are set by using the prior information, and the initial seeds are expanded to form regions using agglomerative clustering. Experimental results show that the proposed method extracts the regions from natural environment images easily and accurately.