• Title/Summary/Keyword: Video Clustering

Search Result 125, Processing Time 0.02 seconds

Motion Vector Recovery Scheme for H.264/AVC (H.264/AVC을 위한 움직임 벡터 복원 방법)

  • Son, Nam-Rye
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.5
    • /
    • pp.29-37
    • /
    • 2008
  • To transmit video bit stream over low bandwidth such as wireless channel, high compression algorithm like H.264 codec is exploited. In transmitting high compressed video bit-stream over low bandwidth, packet loss causes severe degradation in image quality. In this paper, a new algorithm for recovery of missing or erroneous motion vector is proposed. Considering that the missing or erroneous motion vectors in blocks are closely correlated with those of neighboring blocks. Motion vector of neighboring blocks are clustered according to average linkage algorithm clustering and a representative value for each cluster is determined to obtain the candidate motion vector sets. As a result, simulation results show that the proposed method dramatically improves processing time compared to existing H.264/AVC. Also the proposed method is similar to existing H.264/AVC in terms of visual quality.

Region-Based Moving Object Segmentation for Video Monitoring System (비디오 감시시스템을 위한 영역 기반의 움직이는 물체 분할)

  • 이경미;김종배;이창우;김항준
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.1
    • /
    • pp.30-38
    • /
    • 2003
  • This paper presents an efficient region-based motion segmentation method for segmenting of moving objects in a traffic scene with a focus on a Video Monitoring System (VMS). The presented method consists of two phases: motion detection and motion segmentation. Using the adaptive thresholding technique, the differences between two consecutive frames are analyzed to detect the movements of objects in a scene. To segment the detected regions into meaningful objects which have the similar intensity and motion information, the regions are initially segmented using a k-means clustering algorithm and then, the neighboring regions with the similar motion information are merged. Since we deal with not the whole image, but the detected regions in the segmentation phase, the computational cost is reduced dramatically. Experimental results demonstrate robustness in the occlusions among multiple moving objects and the change in environmental conditions as well.

Depth Map Pre-processing using Gaussian Mixture Model and Mean Shift Filter (혼합 가우시안 모델과 민쉬프트 필터를 이용한 깊이 맵 부호화 전처리 기법)

  • Park, Sung-Hee;Yoo, Ji-Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1155-1163
    • /
    • 2011
  • In this paper, we propose a new pre-processing algorithm applied to depth map to improve the coding efficiency. Now, 3DV/FTV group in the MPEG is working for standard of 3DVC(3D video coding), but compression method for depth map images are not confirmed yet. In the proposed algorithm, after dividing the histogram distribution of a given depth map by EM clustering method based on GMM, we classify the depth map into several layered images. Then, we apply different mean shift filter to each classified image according to the existence of background or foreground in it. In other words, we try to maximize the coding efficiency while keeping the boundary of each object and taking average operation toward inner field of the boundary. The experiments are performed with many test images and the results show that the proposed algorithm achieves bits reduction of 19% ~ 20% and computation time is also reduced.

Design of New Fine Dust Measurement Method applying LoG Edge Detection Technique (LoG 윤곽선 검출 기법을 적용한 새로운 미세먼지 측정 방법 설계)

  • Jang, Taek-Jin;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.69-73
    • /
    • 2022
  • In this paper, we propose a new method for measuring fine dust through a LoG(Laplacian of Gaussian)-based edge detection technique. CCTV-based images in a video are collected for fine dust measurement, and image ranges are designated through RoI(Region of Interest). After clustering by applying the GMM(Gaussian Mix Model) to the specified area, we detect edge through the LoG algorithm and measure the detected edge strength. The concentration of fine dust is determined based on the measured intensity data of the edge. In this paper, we propose algorithm as the effectiveness of experiment. As a result of collecting and applying CCTV image in the video installed around the laboratory of this school for a month from June to July, the measured result value was proved through this experiment to be sufficient to calculate the concentration and range of fine dust.

Implementation of a Digital Convergence Platform for Future Home Multimedia Appliances (미래 홈 멀티미디어 가전을 위한 디지털 컨버젼스 플랫폼 구현)

  • Oh, Hwa-Yong;Kim, Dong-Hwan;Lee, Eun-Seo;Chang, Tae-Guy
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.983-986
    • /
    • 2005
  • This paper describes a digital convergence platform(DCP) whice is implemented based on the MPEG-21 multimedia framework. The DCP is a newly proposed solution in this research for the convergence service of future home multimedia environment. The DCP is a common platform designed to have the feature of configurability, via means of S/W, which is needed for the convergence service of diverse digital media. A distributed peer to peer service and transaction model is also a new feature realized in the DCP using the MPEG-21 multimedia framework. A prototype DCP is implemented to verify its functions of multimedia service and transactions. The developed DCPs are networked with IP clustering storage systems for the distributed service of multimedia. Successful streaming services of the MPEG-2/4 video and audio are verified with the implemented test-bed system of the DCP.

  • PDF

Design of video surveillance system using k-means clustering (k-means 클러스터링을 이용한 CCTV의 효율적인 운영 설계)

  • Hong, Ji-Hoon;kim, Seung ho;Lee, Keun-Ho
    • Journal of Internet of Things and Convergence
    • /
    • v.3 no.2
    • /
    • pp.1-5
    • /
    • 2017
  • As CCTV technology develops, it is used in various fields. Currently, we want to know about CCTV operation in detail. In addition, CCTV in many fields is causing problems in operation. We plan to design a new system to solve the problem. In this paper, we analyze data using K-means so that CCTV can be operated efficiently, add new technology and function to existing system to increase image technology and operate efficiently, Technology. In addition, we will design a new system for CCTV technology using k-means so that the CCTV can be efficiently operated in the center, and propose the problem to solve the problem.

Detecting Faces on Still Images using Sub-block Processing (서브블록 프로세싱을 이용한 정지영상에서의 얼굴 검출 기법)

  • Yoo Chae-Gon
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.417-420
    • /
    • 2006
  • Detection of faces on still color images with arbitrary backgrounds is attempted in this paper. The newly proposed method is invariant to arbitrary background, number of faces, scale, orientation, skin color, and illumination through the steps of color clustering, cluster scanning, sub-block processing, face area detection, and face verification. The sub-block method makes the proposed method invariant to the size and the number of faces in the image. The proposed method does not need any pre-training steps or a preliminary face database. The proposed method may be applied to areas such as security control, video and photo indexing, and other automatic computer vision-related fields.

Ship Detection Using Visual Saliency Map and Mean Shift Algorithm (시각집중과 평균이동 알고리즘을 이용한 선박 검출)

  • Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.2
    • /
    • pp.213-218
    • /
    • 2013
  • In this paper, a video based ship detection method is proposed to monitor port efficiently. Visual saliency map algorithm and mean shift algorithm is applied to detect moving ships don't include background information which is difficult to track moving ships. It is easy to detect ships at the port using saliency map algorithm, because it is very effective to extract saliency object from background. To remove background information in the saliency region, image segmentation and clustering using mean shift algorithm is used. As results of detecting simulation with images of a camera installed at the harbor, it is shown that the proposed method is effective to detect ships.

Feature-based Object Tracking using an Active Camera (능동카메라를 이용한 특징기반의 물체추적)

  • 정영기;호요성
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.694-701
    • /
    • 2004
  • In this paper, we proposed a feature-based tracking system that traces moving objects with a pan-tilt camera after separating the global motion of an active camera and the local motion of moving objects. The tracking system traces only the local motion of the comer features in the foreground objects by finding the block motions between two consecutive frames using a block-based motion estimation and eliminating the global motion from the block motions. For the robust estimation of the camera motion using only the background motion, we suggest a dominant motion extraction to classify the background motions from the block motions. We also propose an efficient clustering algorithm based on the attributes of motion trajectories of corner features to remove the motions of noise objects from the separated local motion. The proposed tracking system has demonstrated good performance for several test video sequences.

A Study on Speechreading about the Korean 8 Vowels (감성인식을 위한 이텐의 색채 조화 식별)

  • Shin, Seong-Yoon;Choi, Byung-Seok;Rhee, Yang-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.93-99
    • /
    • 2009
  • The color harmony in video was no way to know for giving pleasure. By identifying these color harmony, it gives order, clarity, similarity, contrast, etc. Therefore, to identify the color balance is very important. Color Harmony identify the color is whether the harmony by color harmony theory of Munsell, Ostwald, Firren, Moon & Spenser, Itten, Chevreul, and Judd etc. One of these methods, we identify color harmonies of 2 colors, 3 colors, 4 colors, 5 colors and 6 colors using Itten's color balance. Identification is using by Canny edge extraction, labeling and clustering, and color extraction and harmony etc. By identifying this color harmonies, we have laid the foundation of emotional database construction and emotional recognition.