• Title/Summary/Keyword: Vibrations control

Search Result 478, Processing Time 0.031 seconds

Linux/RTAI-based Input Shaping Implementation for Suppressing Residual Vibrations (Linux/RTAI기반의 잔류진동 억제 입력성형 구현)

  • Woo, Kyo-Sik;Kim, Jin-Woo;Kang, Chul-Goo;Lee, Dong-Je;Park, Kyung-Hee;Kim, Hyung-Chul
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.3
    • /
    • pp.250-256
    • /
    • 2009
  • Suppressing residual vibrations of flexible materials cheaply is an important issue to increase productivity of automated factory using wafer or glass handling robots. In this paper, we present Linux/RTAI-based implementation of input shaping control for reducing residual vibrations of a mechanical system. Experimental results show that residual vibrations of the mechanical system are reduced up to 82% at a point-to-point linear motion.

  • PDF

Investigation of Dimension Changes in Under Pressure Hydraulic Sediment Flushing Cavity of Storage Dams Under Effect of Localized Vibrations in Sediment Layers

  • Dodaran, Asgar Ahadpour;Park, Sang-Kil;Mardashti, Asadollah;Noshadi, Masoud
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.2
    • /
    • pp.71-81
    • /
    • 2012
  • Several methods have been proposed to control the sedimentation process. These include catchment management, flushing, sluicing, density current venting, and dredging. Flushing is used to erode previously deposited sediments. In pressurized flushing, the sediment in the vicinity of the outlet openings is scoured and a funnel shaped crater is created. In this study, the effect of localized vibrations in the sediment layers on the dimensions of the flushing cone was investigated experimentally. For this purpose, experiments were carried out with two bottom outlet diameters, five discharge releases for each desired water depth, and one water depth above the center of the bottom outlets. The results indicate that the volume and dimensions of the flushing cone are strongly affected by localized vibrations.

Feasibility Study on the Vibration Reduction for Hydraulic Breaker by the Dynamic Vibration Absorber (동흡진기를 이용한 유압 브레이커의 진동 감쇠 가능성에 관한 연구)

  • Kang, Young Ky;Jang, Ju Seop
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.65-71
    • /
    • 2021
  • In this paper, the development of a vibration reduction device for hydraulic breakers was studied. Generally, a hydraulic breaker generates shock vibrations while working. When using vibration-proof rubber, shock vibrations are reduced, but without this, shock vibrations are repeatedly generated. Such repeated shock vibrations not only lower the fatigue strength of hydraulic breakers and excavators equipped with them but also increase the fatigue of the workers. This paper proposes the possibility of reducing shock vibration by using a dynamic vibration absorber.

Control System Design of Pelvis Platform for Biped Walking Stability (이족보행 안전성을 위한 골반기구의 제어시스템 설계)

  • Kim, Su-Hyeon;Yang, Tae-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.306-314
    • /
    • 2009
  • The pelvis platform is the mechanical part which accomplishes the activities of diminishing the disturbances from the lower body and maintaining a balanced posture. When a biped robot walks, a lot of disturbances and irregular vibrations are generated and transmitted to the upper body. As there are some important machines and instruments in the upper body or head such as CPU, controller units, vision system, etc., the upper part should be isolated from disturbances or vibrations to functions properly and finally to improve the biped stability. This platform has 3 rotational degrees of freedom and is able to maintain balanced level by feedback control system. Some sensors are fused for more accurate estimation and the control system which integrates synchronization and active filtering is simulated on the virtual environment.

Vibration Suppression Control of Constrained Spatial Flexible Manipulators (구속받는 3차원 유연 매니퓨레이터의 진동억제 제어)

  • 김진수;우찌야마마사루
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.189-195
    • /
    • 2000
  • For free motions, vibration suppression of flexible manipulators has been one of the hottest research topics. However, for constrained motions, a little effort has been devoted for vibration suppression control. Using the dependency of elastic deflections of links on contact force under static conditions, vibrations for constrained planar two-link flexible manipulators have been suppressed successfully by controlling the contact force. However, for constrained spatial multi-link flexible manipulators, the vibrations cannot be suppressed by only controlling the contact force. So, the aim of this paper is to clarify the vibration mechanism of a constrained, multi-DOF, flexible manipulator and to devise the suppression method. We apply a concise hybrid position/force control scheme to control a flexible manipulator modeled by lumped-parameter modeling method. Finally, a comparison between simulation and experimental results is presented to show the performance of our method.

  • PDF

Experiment of a Simple Feed-forward Active Control Method for the Shock Response of a Flexible Beam and Performance Analysis (유연빔의 충격응답에 대한 단순 피드포워드 능동제어 실험 및 성능분석)

  • Pyo, Sang-Ho;Shin, Ki-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.634-639
    • /
    • 2006
  • Active control method is applied to a flexible beam excited by a shock impulse in order to reduce the residual vibrations after the shock event. It is assumed that the shock input can be measured and is always occurred on the same point of the beam. If the system is well identified and the corresponding inverse system is designed reliably, it has shown that a very simple feed-forward active control method may be applied to suppress the residual vibrations without using error sensors and adaptive algorithm. Both numerical simulations and experimental results show a promising possibility of applying to a practical problem. Also, the performance of the method is examined by considering various practical aspects : shock duration, shock magnitude, and control point.

  • PDF

A Simple Feed-forward Active Control Method for the Shock Response of a Flexible Beam: Experiments and Its Performance Analysis (유연보의 충격응답에 대한 단순 피드포워드 능동제어 실험 및 성능분석)

  • Pyo, Sang-Ho;Shin, Ki-Hong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.651-657
    • /
    • 2006
  • Active control method is applied to a flexible beam excited by a shock impulse in order to reduce the residual vibrations after the shock event. It is assumed that the shock input can be measured and is always occurred on the same point of the beam. If the system is well identified and the corresponding inverse system is designed reliably, it has shown that a very simple feed-forward active control method may be applied to suppress the residual vibrations without using error sensors and adaptive algorithm. Both numerical simulations and experimental results show a promising Possibility of applying to a practical problem. Also, the performance of the method is examined by considering various practical aspects : shock duration, shock magnitude, and control point.

H-TMD with hybrid control method for vibration control of long span cable-stayed bridge

  • Han, Bing;Yan, Wu Tong;Cu, Viet Hung;Zhu, Li;Xie, Hui Bing
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.349-358
    • /
    • 2019
  • Long span cable-stayed bridges are extremely vulnerable to dynamic excitations such as which caused by traffic load, wind and earthquake. Studies on cable-stayed bridge vibration control have been keenly interested by researchers and engineers in design new bridges and assessing in-service bridges. In this paper, a novel Hybrid-Tuned Mass Damper (H-TMD) is proposed and a hybrid control model named Mixed Logic Dynamic (MLD) is employed to build the bridge-H-TMD system to mitigate the vibrations. Firstly, the fundamental theory and modeling process of MLD model is introduced. After that, a new state switching design of the H-TMD and state space equations for different states are proposed to control the bridge vibrations. As the state switching designation presented, the H-TMDs can applied active force to bridge only if the structural responses are beyond the limited thresholds, otherwise, the vibrations can be reduced by passive components of dampers without active control forces provided. A new MLD model including both passive and active control states is built based on the MLD model theory and the state switching design of H-TMD. Then, the case study is presented to demonstrate the proposed methodology. In the case study, the control scheme with H-TMDs is applied for a long span cable-stayed bridge, and the MLD model is established and simulated with earthquake excitation. The simulation results reveal that the suggested method has a well damping effect and the established system can be switched between different control states as design excellently. Finally, the energy consumptions of H-TMD schemes are compared with that of Active Tuned Mass Damper (ATMD) schemes under variable seismic wave excitations. The compared results show that the proposed H-TMD can save energy than ATMD.

Feedforward Active Shock Response Control of a Flexible Beam (유연빔의 피드포워드 능동 충격응답 제어)

  • Pyo, Sang-Ho;Lee, Young-Sup;Shin, Ki-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.213-216
    • /
    • 2005
  • Active control method is applied to a flexible beam excited by a shock impulse by focusing on reducing the residual vibrations after the shock input. It is assumed that the shock input can be measured and is always occurred on the same point of the beam. If the system is well identified and the corresponding inverse system is designed reliably, it has shown that a very simple feed-forward active control method may be applied to suppress the residual vibrations without using an error sensor and adaptive algorithm. Both numerical simulation and experimental result show a promising possibility of applying to a practical problem.

  • PDF

Development of energy based Neuro-Wavelet algorithm to suppress structural vibration

  • Bigdeli, Yasser;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.237-246
    • /
    • 2017
  • In the present paper a new Neuro-Wavelet control algorithm is proposed based on a cost function to actively control the vibrations of structures under earthquake loads. A wavelet neural network (WNN) was developed to train the control algorithm. This algorithm is designed to control multi-degree-of-freedom (MDOF) structures which consider the geometric and material non-linearity, structural irregularity, and the incident direction of an earthquake load. The training process of the algorithm was performed by using the El-Centro 1940 earthquake record. A numerical model of a three dimensional (3D) three story building was used to accredit the control algorithm under three different seismic loads. Displacement responses and hysteretic behavior of the structure before and after the application of the controller showed that the proposed strategy can be applied effectively to suppress the structural vibrations.