• Title/Summary/Keyword: Vibration controlled frame

Search Result 23, Processing Time 0.022 seconds

A Vibration Response Analysis of Steel Building Frame with V Shape Brace Vibrationally Controlled by Turbulent Flow Dampers Sealed by Visco-Elastic Material (점탄성물질 난류댐퍼를 이용한 V형 철골 브레이스 골조의 진동응답해석)

  • Lee, Ho;Lee, Sang-Yeob
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.103-113
    • /
    • 2002
  • This thesis investigates vibration response characteristics of building frames in which dampers are installed. The frames belong to passively vibration-controlled. Structures which utilizes energy dissipation of mechanical dampers provided in the structure. In this thesis, a turbulent flow damper sealed by visco-elastic material was dealt with as the device of passive vibration control. To investigate the resisting force characteristics of the damper, harmonic vibratration tests were carried out. Based on the test results, a theoretical model of the damper resistance was presented and a method of identifying the model parameters was proposed. Shaking table tests of the frame with and without the dampers were carried out and the effectiveness of the damper was examined. The response of the frame with the dampers was reduced to 1/2 or 1/3 of the cases without the damper.

  • PDF

The countermeasure for the Vibration Problem of Turbo Chiller (300RT) (300RT급 터보냉동기 진동원인 분석 및 해결방안)

  • 김관영;홍제민;배종국
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.184-188
    • /
    • 2001
  • Severe vibration was detected during test operation in motor frame of the Turbo Chiller (300RT). To identify the vibration problem, vibration measurement and modal test were carried out. From the test results, it is concluded that the severe vibration occurred due to the resonance between the motor frame horizontal mode and the motor excitation frequency. Therefore the horizontal mode of the frame could be controlled by the sensitivity analysis results for the length of the supporting plate.

  • PDF

Shape Design of Frame Structures for Vibration Suppression and Weight Reduction

  • Hase, Miyahito;Ikeda, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2246-2251
    • /
    • 2003
  • This paper proposes shape design of frame structures for vibration suppression and weight reduction. The $H_{\infty}$ norm of the transfer function from disturbance sources to the output points where vibration should be suppressed, is adopted as the performance index to represent the magnitude of vibration transfer. The design parameters are the node positions of the frame structure, on which constraints are imposed so that the structure achieves given tasks. For computation of Pareto optimal solutions to the two-objective design problem, a number of linear combinations of the $H_{\infty}$ norm and the total weight of the structure are considered and minimized. For minimization of the scalared objective function, a Lagrange function is defined by the objective function and the imposed constraints on the design parameters. The solution for which the Lagrange function satisfies the Karush-Kuhn-Tucker condition, is searched by the sequential quadratic programming (SQP) method. Numerical examples are presented to demonstrate the effectiveness of the proposed design method.

  • PDF

Vibration and Noise Control of Structural Systems Using Squeeze Mode ER Mounts

  • Jeong, Weui-Bong;Yoo, Wan-Suk;Jung, Woo-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1949-1960
    • /
    • 2003
  • This paper presents vibration and noise control of flexible structures using squeeze mode electro-rheological mounts. After verifying that the damping force of the ER mount can be controlled by the intensity of the electric fild, two different types of ER squeeze mounts have been devised. Firstly, a small size ER mount to support 3 kg is manufactured and applied to the frame structure to control the vibration. An optimal controller which consists of the velocity and the transmitted force feedback signals is designed and implemented to attenuate both the vibration and the transmitted forces. Secondly, a large size of ER mount to support 200 kg is devised and applied to the shell structure to reduce the radiated noise. Dynamic modeling and controller design are undertaken in order to evaluate noise control performance as well as isolation performance of the transmitted force. The radiated noise from the cylindrical shell is calculated by SYSNOISE using forces which are transmitted to the cylindrical shell through two-stage mounting system.

Seismic control performance and experimental study of multiple pounding tuned rolling mass damper

  • Peiran Fan;Shujin Li;Ling Mao
    • Earthquakes and Structures
    • /
    • v.24 no.4
    • /
    • pp.247-258
    • /
    • 2023
  • Multiple pounding tuned rolling mass damper (MPTRMD) distributed in the cavity of voided slabs is proposed to passively control multi-story frame structures, which disperses the mass of the oscillator to multiple dampers so that the control device can be miniaturized without affecting the vibration control performance. The mechanism and the differential motion equations of the MPTRMD-controlled multi-degree-of-freedom system are derived based on the Lagrange principle. Afterward, this advanced RMD is applied to a simplified 20-floor steel frame to evaluate the seismic control performance in the numerical analysis. A four-storey frame structure equipped with MPTRMD is then taken for a shaking table test to verify its effectiveness of control performance. The pounding mechanism has been detailed studied numerically and experimentally as well. The numerical and experimental results show that the proposed damper is practically promising not only for its prominent control performance but also for its lightweight and space-saving. Additionally, the pounding mechanism influenced by the variable impact parameters exhibits a balance between the two effects of motional limitations and energy dissipation.

Structural Design of Vibration Controlled Tall Building with Overhang Structure

  • Ishibashi, Yoji;Yoshizawa, Katsuhito;Ogawa, Ichiro;Tamari, Masatoshi;Nagayama, Kenji;Oki, Hatsuka
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.177-183
    • /
    • 2019
  • This paper describes the structural design of a 212 m tall building currently under construction in the Tokiwabashi District Redevelopment Project facing Tokyo Station. In this project there was a requirement to rationally solve many issues arising from the conditions of the redevelopment project. In particular, the following two points were considered to be important from the point of view of structural design. 1) To provide an overhang frame with the perimeter columns on the lower stories inclined, in order to enable a typical floor area that greatly exceeded the limitations of the underground structure shape. 2) To provide high grade seismic performance for the office buildings to be constructed on prime city center land. LSCVCS (Lower Stories Concentrated Vibration Control System) was proposed as the method of rationally designing the overhang frame, which is an extremely disadvantageous element in the structural scheme of the tall building with a large slenderness ratio. LSCVCS is a system to provide effective damping by arranging vibration control devices in a concentrated manner in a lower story with large story height, that produces large deformation in an earthquake. Also, the vibration control devices arranged in the lower story are limited to viscous devices, to take into consideration the residual deformation of the overhang frame after an earthquake. The results of investigations into the specific effects of the system for the seismic design are reported, including Performance-based seismic design.

A Vibration Response Analysis of Steel Building Frame with K Shape Brace Vibrationally Controlled by Turbulent Flow Dampers sealed by Visco-elastic Material (점탄성물질 난류댐퍼를 이용한 K형 철골 브레이스 골조의 진동응답해석)

  • Lee, Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.61-68
    • /
    • 2006
  • In this thesis, a full-scale K shape damper test model was constructed in which a passive vibration control system. This passive vibration control system was incorporated with the use of a newly developed turbulent flow damper sealed by viscoelastic material. A series of tests and earthquake observation has been conducted in this test model. The purpose of the present thesis is to investigate the vibration response characteristics of the building and to verify the effectiveness of the vibration control system. By the static loading test, it was recognized that incorporation of the dampers had little influence on static horizontal stiffness of the building. Free vibration tests revealed that the dampers incorporated increased the damping ratio of the building up to 3 times compared with the undamped case. The effectiveness of the developed vibration control system was confirmed based on the excitation tests and earthquake response observation.

  • PDF

Direct assignment of the dynamics of a laboratorial model using an active bracing system

  • Moutinho, C.;Cunha, A.;Caetano, E.
    • Smart Structures and Systems
    • /
    • v.8 no.2
    • /
    • pp.205-217
    • /
    • 2011
  • This article describes the research work involving the implementation of an Active Bracing System aimed at the modification of the initial dynamics of a laboratorial building structure to a new desired dynamics. By means of an adequate control force it is possible to assign an entirely new dynamics to a system by moving its natural frequencies and damping ratios to different values with the purpose of achieving a better overall structural response to external loads. In Civil Engineering applications, the most common procedures for controlling vibrations in structures include changing natural frequencies in order to avoid resonance phenomena and increasing the damping ratios of the critical vibration modes. In this study, the actual implementation of an active system is demonstrated, which is able to perform such modifications in a wide frequency range; to this end, a plane frame physical model with 4 degrees-of-freedom is used. The Active Bracing System developed is actuated by a linear motor controlled by an algorithm based on pole assignment strategy. The efficiency of this control system is verified experimentally by analyzing the control effect obtained with the modification of the initial dynamic parameters of the plane frame and observing the subsequent structural response.

Study on the space frame structures incorporated with magnetorheological dampers

  • Xu, Fei-Hong;Xu, Zhao-Dong;Zhang, Xiang-Cheng
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.279-288
    • /
    • 2017
  • Magnetorheological damper has received significant attention in recent years due to the reason that it can offer adaptability of active control devices without requiring the associated large power sources. In this paper, performance tests on a MR damper are carried out under different currents, excitation amplitudes and frequencies, the damping characteristics and energy dissipation capacity of the MR damper are analyzed. Elasto-plastic dynamic analysis on a space frame structure incorporated with MR dampers is conducted, and numerical analysis results show that MR dampers can significantly mitigate the structural vibration responses. Finally, the genetic algorithm with the improved binary crossover and mutation technique is adopted to optimize the arrangement of MR dampers. Numerical results show that dynamic responses of the optimal controlled structure are mitigated more effectively.

Design and Control of Railway Vehicle Suspension System Featured by MR Damper (MR 댐퍼를 적용한 철도차량 현가장치의 설계 및 제어)

  • Ha, Sung-Hoon;Choi, Seung-Bok;Lee, Kyu-Seob
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.71-76
    • /
    • 2010
  • This paper presents the feasibility for improving the ride quality of railway vehicle equipped with semi-active suspension system using magnetorheological(MR) fluid damper. In order to achieve this goal, a fifteen degree of freedom of railway vehicle model, which includes a car body, bogie frame and wheel-set is proposed to represent lateral, yaw and roll motions. The MR damper system is incorporated with the governing equation of motion of the railway vehicle which includes secondary suspension. To illustrate the effectiveness of the controlled MR dampers on railway vehicle secondary suspension system, the sky-hook control law using the velocity feedback is adopted. Computer simulation for performance evaluation is performed using Matlab. Various control performances are demonstrated under external excitation which is the creep force between wheel and rail.

  • PDF