Acknowledgement
Supported by : National Science Fund for Distinguished Young Scholars, Natural Science Foundation of Jiangsu Province, State Foundation for Studying Abroad
References
- Berovitz, L.D. (1974), Optimal Control Theory, Springer-Verlag, New York, NY, USA.
- Carlson, J.D., Catanzarite, D.M. and Clair, K.A. (1996), "Commercial magneto-rheological fluid devices", Int. J. Modern Phys. B, 10(23-24), 2857-2865. https://doi.org/10.1142/S0217979296001306
- Cetin, S., Zergeroglu, E., Sivrioglu, S. and Yuksek, I. (2011), "A new semiactive nonlinear adaptive controller for structures using MR damper: design and experimental validation", Nonlinear Dyn., 66(4), 731-743. https://doi.org/10.1007/s11071-011-9946-0
- Giberson, M.F. (1969), "Two nonlinear beams with definitions of ductility", J. Struct. Div., 95, 137-157.
- Jansen, L.M. and Dyke, S.J. (2000), "Semiactive control strategies for MR dampers: comparative study", J. Eng. Mech., 126(8), 795-803. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:8(795)
- Kim, Y., Langari, R. and Hurlebaus, S. (2009), "Semiactive nonlinear control of a building with a magnetorheological damper system", Mech. Syst. Sign. Proc., 23(2), 300-315. https://doi.org/10.1016/j.ymssp.2008.06.006
- Lee, D.Y. and Wereley, N.M. (1999), "Quasi-steady Herschel-Bulkley analysis of electroand magneto-rheological flow mode dampers", J. Intel. Mater. Syst. Struct., 10(10), 761-769. https://doi.org/10.1106/E3LT-LYN6-KMT2-VJJD
- Motra, G.B., Mallik, W. and Chandiramani, N.K. (2011), "Semiactive vibration control of connected buildings using magnetorheological dampers", J. Intel. Mater. Syst. Struct., 22(16), 1811-1827. https://doi.org/10.1177/1045389X11412640
- Phillips, R.W. (1969), "Engineering applications of fluids with a variable yield stress", Ph.D. Dissertation, University of California, Berkeley.
- Soong, T.T. and Cimellaro, G.P. (2009), "Future directions in structural control", Struct. Control Hlth. Monit., 16(1), 7-16. https://doi.org/10.1002/stc.291
- Spencer, Jr. B.F., Dyke, S.J., Sain, M.K. and Carlson, J.D. (1997), "Phenomenological model for magnetorheological dampers", J. Eng. Mech., 123(3), 230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)
- Tsang, H.H., Su, R.K.L. and Chandler, A.M. (2006), "Simplified inverse dynamics models for MR fluid dampers", Eng. Struct., 28(3), 327-341. https://doi.org/10.1016/j.engstruct.2005.06.013
- Tu, J.W., Liu, J., Qu, W.L., Zhou, Q., Cheng, H.B. and Cheng, X.D. (2011), "Design and fabrication of 500-kN large-scale MR damper", J. Intel. Mater. Syst. Struct., 22(5), 475-487. https://doi.org/10.1177/1045389X11399942
- Wang, X. and Gordaninejad, F. (1999), "Flow analysis of fieldcontrollable, electro-and magneto-rheological fluids using Herschel-Bulkley model", J. Intel. Mater. Syst. Struct., 10(8), 601-608. https://doi.org/10.1106/P4FL-L1EL-YFLJ-BTRE
- Wereley, N.M. and Pang, L. (1998), "Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plate models", Smart Mater. Struct., 7(5), 732-743. https://doi.org/10.1088/0964-1726/7/5/015
- Xu, Z.D. and Guo, Y.Q. (2006), "Fuzzy control method for earthquake mitigation structures with Magnetorheological dampers", J. Intel. Mater. Syst. Struct., 17(10), 871-881. https://doi.org/10.1177/1045389X06061044
- Xu, Z.D., Jia, D.H. and Zhang, X.C. (2012), "Performance tests and mathematical model considering magnetic saturation for magnetorheological damper", J. Intel. Mater. Syst. Struct., 23(12), 1331-1349. https://doi.org/10.1177/1045389X12445629
- Xu, Z.D. and Shen, Y.P. (2003), "Intelligent bi-state control for the structure with magnetorheological dampers", J. Intel. Mater Syst. Struct., 14(1), 35-42. https://doi.org/10.1177/1045389X03014001004
- Xu, Z.D., Shen, Y.P. and Guo, Y.Q. (2003), "Semi-active control of structures incorporated with magnetorheological dampers using neural networks", Smart Mater. Struct., 12(1), 80-87. https://doi.org/10.1088/0964-1726/12/1/309
- Xu, Z.D., Liao, Y.X., Ge, T. and Xu, C. (2016a), "Experimental and theoretical study of viscoelastic dampers with different matrix rubbers", J. Eng. Mech., 142(8), 04016051. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001101
- Xu, Z.D., Suo, S. and Lu, Y. (2016b), "Vibration control of platform structures with magnetorheological elastomer isolators based on an improved SAVS law", Smart Mater. Struct., 25(6), 065002. https://doi.org/10.1088/0964-1726/25/6/065002
- Xu, Z.D., Xu, F.H. and Chen, X. (2016c), "Vibration suppression on a platform by using vibration isolation and mitigation devices", Nonlinear Dyn., 83(3), 1341-1353 https://doi.org/10.1007/s11071-015-2407-4
- Yan, W.M., Ji, J.B., Dong, B. and Ge, H.J. (2011), "Theoretical and experimental studies on a new reversible magnetorheological damper", Struct. Control Hlth. Monit., 18(1), 1-19.
- Yang, G., Spencer, Jr. B.F., Carlson, J.D. and Sain, M.K. (2002), "Large-scale MR fluid dampers: modeling and dynamic performance considerations", Eng. Struct., 24(3), 309-323. https://doi.org/10.1016/S0141-0296(01)00097-9
Cited by
- Modeling and controlling a semi-active nonlinear single-stage vibration isolator using intelligent inverse model of an MR damper vol.34, pp.9, 2020, https://doi.org/10.1007/s12206-020-0804-1