• 제목/요약/키워드: Vibration Isolation Level

검색결과 78건 처리시간 0.024초

Evaluations on isolation method of floor impact sounds by real impact source (실충격원을 고려한 바닥충격음 저감방안의 평가)

  • Yoo, Seung-Yup;Lee, Pyung-Jik;Jeong, Young;Jeon, Jin-Yong;Ryu, Jong-Kwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.366-370
    • /
    • 2006
  • In this study, characteristics of impact force and impact sound of impact source such as bang machine, impact ball, and children's jumping were review. Results of review showed that impact ball has most similar characteristic to real impact sources in terms of objective properties such as impact force and impact sound. The effects of various isolator on floor impact sound were also investigated in apartment building and test facilities building using bang machine an impact ball. From the field measurement, it was found that the difference in reduction sound level between bang machine and impact ball was relatively large and the reduction sound level by impact ball was much larger than bang machine.

  • PDF

Effect of the Interface Structure and Section Shape of Isolation Material in Floating Floor Impcat Vibration Level Decrease (뜬바닥 구조에서 층간차음재의 계면구조 및 단면형상이 충격진동량 저감효과에 미치는 영향)

  • 김범수;양수영;제현수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.296-299
    • /
    • 2004
  • 단열 완충재의 하부단면에서 양각 형태가 전체 면적에서 .차지하는 비율에 따라 진동 충격음 저감량을 실험하였다. 양각 형태가 차지하는 비율이 높더라도 진동 충격음 저감량에는 큰 성능을 나타내지 않았다. 바닥 구조에서 슬래브와 상판 사이에 단열완충재를 설치할 경우 중량 충격음이 오히려 증가하는 경향을 보이고 있다. 이것은 뜬 바닥 구조에서 완충재의 설치로 인하여 슬래브와 상판간의 거동이 다르게 발생하기 때문이다.

  • PDF

Improvement In the Serviceability of Floor Slab of Remodeled Building and the Performance of Floor Impact Noise (리모델링 건축물의 바닥슬래브 사용성 및 바닥충격음 성능개선)

  • Lee, Byung-Kwon;Bae, Sang-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1243-1246
    • /
    • 2006
  • As remodeling market is growing and peoples' concern on health and well-being is getting high, there is a need to apply environmentally friendly approach to remodeling an apartment houses. But, in point of the impact noise concerned, the thickness of the concrete slab and the limited ceiling height of the remodelling houses are the main constraints to improve the impact noise performance. In order to investigate the effect of the impact noise isolation as structural treatments for the structural elements, heavy-weight impact noise and tapping noise were measured in an remodeling building. As a result, structural strengthening method by H-beam was successful to enhance the impact noise level at about 3 or 4 class by the sound classification system.

  • PDF

Improvement of the Performance Based Seismic Design Method of Cable Supported Bridges with Resilient-Friction Base Isolation Systems (II-Proposal for the Seismic Design Procedure) (마찰복원형 지진격리장치가 설치된 케이블교량의 성능 기반 내진설계법 개선(II-내진설계 절차 제안))

  • Gil, Heungbae;Park, Sun Kyu;Han, Kyoung Bong;Yoon, Wan Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제24권4호
    • /
    • pp.169-178
    • /
    • 2020
  • In a previous paper, ambient vibration tests were conducted on a cable stayed bridge with resilient-friction base isolation systems (R-FBI) to extract the dynamic characteristics of the bridge and compare the results with a seismic analysis model. In this paper, a nonlinear seismic analysis model was established for analysis of the bridge to compare the difference in seismic responses between nonlinear time history analysis and multi-mode spectral analysis methods in the seismic design phase of cable supported bridges. Through these studies, it was confirmed that the seismic design procedures of the "Korean Highway Bridge Design Code (Limit State Design) for Cable Supported Bridges" is not suitable for cable supported bridges installed with R-FBI. Therefore, to reflect the actual dynamic characteristics of the R-FBI installed on cable-supported bridges, an improved seismic design procedure is proposed that applies the seismic analysis method differently depending on the seismic isolation effect of the R-FBI for each seismic performance level.

An Experimental Study on the Vibration Response Characteristics of Floating Floor Systems for Heavyweight Impact Noise Reduction. (바닥충격음 차단을 위한 뜬바닥 구조의 진동응답특성에 관한 실험적 연구)

  • Choi, Kyung-Suk;Seok, Won-Kyun;Mauk, Ji-Wook;Shin, Yi-Seop;Kim, Hyung-Joon;Kim, Jeong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.227-228
    • /
    • 2023
  • A floating floor generally consists of mortar bed separated from the structural RC slab by a continuous resilient layer. It is known that the floating floors are a type of vibration-isolation system to improve the impact sound insulation performance. However, some researchers have demonstrated that the amplification of vibration response at a specific range of frequencies results in an increase in the impact sound level. This study carried out the forced vibration tests to obtain the frequency response function (FRF) of a floating floor compared with a bare RC slab. Test results shows that the additional peak occur in vibrational spectrum of the floating floor except natural vibration modes of the bare RC slab. This is because the relatively flexible resilient material and mass of the mortar bed offer an additional degree of freedom in the structural system. Therefore, it could be efficient for reduction of floor impact vibration and noise to control the additional mode frequency and response of floating floors.

  • PDF

Dynamic Stability Analysis of Base-Isolated Low-level Nonlinear Structure Under Earthquake Excitation (지진시 저층건물 면진구조의 비선형 동적 거동)

  • Mun, Byeong-Yeong;Gang, Gyeong-Ju;Gang, Beom-Su;Kim, Gye-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제25권11호
    • /
    • pp.1743-1750
    • /
    • 2001
  • This paper presents an analysis of nonlinear response of the seismically isolated structure against earthquake excitation to evaluate isolation performances of a rubber bearing. In the analysis of the vibration of building, the building is modeled by lumped mass system where the restoring force is considered as linear, bilinear and trilinear. Fundamental equations of motion are derived for the base isolated structure, and hysteretic and nonlinear-elastic characteristics are considered for a numerical calculation. The excitation levels are magnified fur the recorded strong earthquake motions in order to examine dynamic stability of the structure. Seismic responses (of the building are compared fur the each restoring force type. As a result, it is shown that the effect of the motion by the nonlinear response of the building is comparatively not so large from a seismic design standpoint. The responses of the isolated structures reduce sufficiently and controled the motion of the building well in a practical range. By increasing the acceleration of the earthquake, the yielding of the farce was occurred in the concrete and steel frame, which shows the necessity of the exact nonlinear dynamic analysis.

Performance study on the whole vibration process of a museum induced by metro

  • Yang, Weiguo;Wang, Meng;Shi, Jianquan;Ge, Jiaqi;Zhang, Nan;Ma, Botao
    • Structural Engineering and Mechanics
    • /
    • 제55권2호
    • /
    • pp.413-434
    • /
    • 2015
  • The vibrations caused by metro operation propagate through surrounding soil, further induce secondary vibrations of the nearby underground structures and adjacent buildings. In order to investigate the effects of vibrations caused by metro on use performance of buildings, vibration experiment of Chengdu museum was carried out firstly. Then, the coupling tunnel-soil-structure finite element model was established with software ANSYS detailedly, providing a useful tool for investigating the vibration performances of structures. Furthermore, the dynamic responses and vibration predictions of museum building were obtained respectively by the whole process time-domain analysis and frequency-domain analysis, which were compared with the vibration reference values of museum. Quantitative analyses of the museum building performance were carried out, and the possible tendency and changing laws of vibration level with floors were proposed. Finally, the related vibration isolation measures were compared and discussed. The tests and analysis results show that: The vertical vibration responses almost increased with the increasing of building floors, while weak floors existed for the curve of horizontal vibration; The vertical vibrations were larger than the horizontal vibrations, indicating the vibration performances of building caused by metro were characterized with vertical vibrations; The frequencies of the museum corresponding to the peak vibration levels were around 6~17Hz; The damping effect of structure with 33m-span cantilever on vertical vibration was obvious, however, the damping effect of structure with foundation vibration isolators was not obvious.

Cost Effectiveness Evaluation of Seismic Isolated Bridges in Low and Moderate Seismic Region (중약진 지역에서의 지진격리교량의 비용효율성 평가)

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.440-447
    • /
    • 2000
  • In order to evaluate the cost effectiveness of seismic isolation for bridges in low and moderate seismic region, a method of calculation minimum life-cycle cost of seismic-isolated bridges under specific acceleration level and soil condition is developed. Input ground motion is modeled as spectral density function compatible with response spectrum for combination of acceleration coefficient and site coefficient. Failure probability is calculated by spectrum analysis based on random vibration theories to simplify repetitive calculations in the minimization procedure. Ductility of piers and its effects on cost effectiveness are considered by stochastic linearization method. Cost function and cost effectiveness index are defined by taking into consideration the characteristics of seismic isolated bridges. Limit states for calculation of failure probability are defined on superstructure, isolator and pier, respectively. The results of example design and analysis show that seismic isolation is more cost-effective in low and moderate seismic region than in high seismic region.

  • PDF

The Effect of Aerated Concrete containing Foam Glass Aggregate on the Floor Impact Sound Insulation (발포유리 혼합기포 콘크리트의 바닥충격음 차단성능 영향에 관한 연구)

  • Yun, Chang-Yeon;Jeong, Jeong-Ho;Kim, Myung-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제23권5호
    • /
    • pp.414-422
    • /
    • 2013
  • As structure-borne sound, the floor impact sound is one of the serious noises in residential building. Most of heating system applied to the typical Korean residential building is floor heating system which is called ondol. The ondol usually consists of finishing material, mortar with heating coil, light-weight aerated concrete and reinforced concrete. This study focused on the isolation of heavy-weight impact sound and modification of mortar and light-weight aerated concrete. Specifically the glass foam aggregate was added on light-weight aerated concrete. Also, water-cement ratio and amount of cement on mortar were revised. The sound pressure level of heavy-weight impact was measured in reverberation chamber using both bang-machine and impact ball. The size of specimen was 1 m by 1 m. Substitution ratio of glass foam aggregate on light-weight aerated concrete shows relationship with heavy-weight impact sound pressure level. In addition, heavy-weight impact sound pressure level was decreased with increment of water-cement ratio and amount of cement on mortar.

A Study on the Body Attachment Stiffness for the Road Noise

  • Kim Ki-Chang;Kim Chan-Mook
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1304-1312
    • /
    • 2005
  • The ride and noise characteristics of a vehicle are significantly affected by the vibration transferred to the body through the chassis mounting points in the engine and suspension. It is known that body attachment stiffness is an important factor of idle noise and road noise for NVH performance improvement. The body attachment stiffness serves as a route design aimed at isolating the vibration generated inside the car due to the exciting force of the engine or road. The test result of the body attachment stiffness is shown in the FRF curve data; the stiffness level and sensitive frequency band are recorded by the data distribution. The stiffness data is used for analyzing the parts that fail to meet the target stiffness at a pertinent frequency band. The analysis shows that the target frequency band is between 200 and 500 Hz. As a result of the comparison in a mounted suspension, the analysis data is comparable to the test data. From these results, there is a general agreement between the predicted and measured responses. This procedure makes it possible to find the weak points before a proto car is produced, and to suggest proper design guidelines in order to improve the stiffness of the body structure.