• Title/Summary/Keyword: Vibration Comfort

Search Result 360, Processing Time 0.031 seconds

Development of Vibration Index for the Objective Evaluations of Idle Vibration Quality in a Passenger Car (차량 아이들 감성진동 평가를 위한 진동평가지수의 연구)

  • Park, Hong-Seok;Lee, Sang-Kwon;Yoon, Gi-Soo;Lee, Min-Sup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.214-222
    • /
    • 2012
  • Driver's feeling is variously affected by lots of components such as engine, frame, wheels, and seats during the operation of automobiles. The main objective of this research is to identify the correlation between subjective evaluation and vibration metrics that was set by ISO to investigate development of the car vibration quality index using multiple linear regressions(MLR). A previous research related with automotive vibration quality used the method of calculating acceleration values of the point of a seat, a seat back, foot as RMS for objective evaluation. The automotive comfort is determined by RMS values. In comparison with the previous research, this study includes not only the vibration metrics, but also subjective values by jury evaluation. By indentifying the correlation between subjective evaluation and vibration metrics, the automotive vibration quality index is developed through MLR. Based on the results of this study, the proposed the automotive vibration quality index which developed through MLR will be helpful to obtain objective and reliable automotive comfort values.

Development of Vibration Index for the Objective Evaluations of Idle Vibration Quality in a Passenger Car (차량 아이들 감성진동 평가를 위한 진동평가지수의 연구)

  • Park, Hong-Seok;Lee, Sang-Kwon;Yoon, Gi Soo;Lee, Min Sup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.683-688
    • /
    • 2012
  • Driver's feeling is variously affected by lots of components such as engine, frame, wheels, and seats during the operation of automobiles. The main objective of this research is to identify the correlation between subjective evaluation and vibration metrics that was set by ISO to investigate development of the car vibration quality index using multiple linear regressions (MLR). A previous research related with automotive vibration quality used the method of calculating acceleration values of the point of a seat, a seat back, foot as RMS for objective evaluation. The automotive comfort is determined by RMS values. In comparison with the previous research, this study includes not only the vibration metrics, but also subjective values by jury evaluation. By indentifying the correlation between subjective evaluation and vibration metrics, the automotive vibration quality index is developed through MLR. Based on the results of this study, the proposed the automotive vibration quality index which developed through MLR will be helpful to obtain objective and reliable automotive comfort values.

  • PDF

A Study on Evaluation of Ride Comfort for Railway (철도차량의 승차감 평가방법에 대한 고찰)

  • 김영국;최강윤
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.405-412
    • /
    • 1998
  • Recently“ride comfort”problem becomes increasingly important because of today's needs for train speedup The concept of term “riding comfort” is equivocal. Generally it is defined as the vehicle vibration. There are many studies on evaluation method of ride comfort for railway. But each of then recommends the different assessment method and the different guidance. So users must review whether they can apply it to their system or not. In this paper, we discuss the evaluation methods defined in the standards - ISO 2631, UIC 513 R, CEN DRAFT prENV 12299 and the ride index suggested by Sperling.

  • PDF

Estimation of Stiffness Limit for Railway Bridge Vibration Serviceability (진동사용성을 고려한 철도교량구조물의 강성한계 분석)

  • Jeon, Bub-Gyu;Kim, Nam-Sik;Kim, Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.5
    • /
    • pp.489-498
    • /
    • 2008
  • In general, deflection limit criteria of bridge design specifications have been considered based on static serviceability and structural stability. Dynamic serviceability induced from bridge vibration actually has not been included in the criteria. Thus, it is necessary for deflection limit to be considered in order to check dynamic service- ability on bridge vibration. In this study, The allowable displacement of Korea Railway Bridge Design Specifications is compared to the frequency domain comfort limit and analyzed france code and japanese code. Korea Railway Bridge Design Specifications is regulated based on the train speed. Such is because the vibration time duration is partly considered. but this criteria is not satisfied with comfort limit. and, it is estimated to be capable to provide deflection limit considering dynamic serviceability. In order to evaluate the dynamic serviceability of various types of railway bridges in current public were selected and their dynamic signals were measured. and the result of the bridge-train interaction analysis according to the changes in bridge stiffness was compared to the comfort limit to suggest the stiff-ness limit to the dynamic serviceability, which should conveniently be applied at the field.

Ride Quality Investigation of Passenger Cars on Different Road Conditions

  • Park, Se Jin;Subramaniyam, Murali
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.389-396
    • /
    • 2013
  • Objective: The ride qualities of the six passenger cars were evaluated in 4 subjects on the highway and uneven road. The relation between vibration with driving velocity and driving posture were also investigated separately. Background: Ride comfort plays an important role in the vehicle design. Vibration is the one of the principal components associated with ride comfort. Method: The acceleration of the foot, hip and back were measured using B&K accelerometers in this study. The velocity of the passenger cars was maintained at a constant speed of 80km/h on the highway and 40km/h on the uneven road. For evaluating the effects of driving velocity and driving posture on vehicle's vibration level, separate experiments were performed on the highway with 5 different vehicle speeds and 5 different backrest angles, respectively. Results: The overall ride value of the luxury car showed the best result while the smaller car showed the worst value on the highway. On the uneven road the overall ride value level was increased 75~98%. All the vehicles had the SEAT value less than 1. Faster the velocity lowers the SEAT value. The ride quality in terms of vibration gets worst when the backrest angle increased. Conclusion: The smaller car had a first mode at the higher frequency and showed higher vibration level. SEAT value was mostly affected by the seat property not by vehicle. We ranked the luxury car seat had a best vibration reduction quality than others based on SEAT values. When the driving velocity increased, the overall ride values were increased proportionally and the SEAT values were somewhat decreased. Application: Evaluation of whole-body vibration in the passenger car.

Ride Comfort Analysis of Passenger Vehicle Featuring ER Damper with Different Tire Pressure (타이어 공기압에 따른 ER 댐퍼 장착 승용차의 승차감분석)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.210-216
    • /
    • 2016
  • In this work, performance analysis to improve ride comfort of an ER (electrorheological) fluid damper for a mid-sized passenger vehicle in terms of tire pressure is presented. An ER damper by considering specification for a mid-sized commercial passenger vehicle is proposed and mechanically designed. After manufacturing and assembling the proposed ER damper with design parameters, their performance such as field-dependent damping forces are experimentally measured. A quarter-vehicle ER ECS (Electronic Control Suspension) system consisting of the ER damper, sprung mass, spring, sky-hook controller and tire is constructed to analysis the ride comfort performances. Vertical tire stiffness with different tire pressure is experimentally measured and investigated. In addition, ride comfort analysis such as vertical acceleration root mean square (RMS) of sprung mass is investigated under bump road using quarter-vehicle test equipment.

Ride Comfort Evaluation of Electronic Control Suspension Using a Magneto-rheological Damper (MR 댐퍼를 이용한 전자제어 현가장치의 승차감 평가)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.463-471
    • /
    • 2013
  • This paper presents design and control of electronic control suspension(ECS) equipped with controllable magnetorheological(MR) damper for passenger vehicle. In order to achieve this goal, a cylindrical type MR fluid damper that satisfies design specification of a middle-sized commercial passenger vehicle is proposed. After manufacturing the MR damper with design parameters, their field-dependent damping forces are experimentally evaluated and compared with those of a conventional damper. A quarter-vehicle MR ECS system consisting of sprung mass, spring, tire, controller and the MR damper is established in order to investigate the ride comfort performances. On the basis of the governing equation of motion of the suspension system, five control strategies(soft, hard, comfort, sport and optimal mode) are formulated. The proposed control strategies are then experimentally realized with the quarter-vehicle MR ECS system. Control performances such as vertical acceleration of the car body and tire deflection are evaluated in frequency domains on random road condition. In addition, performance comparison of WRMS(weighted root mean square) of the quarter-vehicle MR ECS system on random road are undertaken in order to investigate ride comfort characteristics.

Analysis on the Characteristics of the Ride Comfort for High Speed Trains on the High Speed Line/conventional Line (고속선/기존선 운행에 따른 고속철도 차량의 승차감 특성 분석)

  • 김석원;박찬경;김기환;박태원;김영국
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.999-1006
    • /
    • 2004
  • Recently, the ride comfort problem becomes increasingly important because of today's needs for train speedup. The railway has the track irregularities which cause vibrations, such as rail joints, turnout, level crossing, transition corves and super-elevation ramps, and variations in the track level(z-axis) and the gauge(y-axis). In Korea, the service run of the high speed train has been made since the 1st of April, 2004. The commercial high-speed trains must be run on the compound lines which are composed of high-speed line and conventional line. The high speed lines in both Kyoungbu line and Honam line have 57.5% and 33.8%, respectively In this Paper, the ride comfort has been reviewed by the various experimental methods when the high-speed trains are operated on both Kyoungbu line and Honam line. The results show that the high-speed train has no problems from the viewpoint of the comfort ride during the operation on the high speed line and conventional line.

Evaluate of allowable acceleration for Occupants in Horizontal Vibration of Buildings according to Natural Frequency (고유주기에 따른 건축물의 수평진동에 대한 거주자의 허용가속도평가)

  • Cho, Kang-Pyo;Jeong, Seung-Hwan;Cho, Gi-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.228-233
    • /
    • 2008
  • In this paper, peak acceleration for horizontal vibration of buildings was estimated from the results of vibration tests using a shaking table. Human comfort of occupants is supposed to be satisfied according to the peak acceleration in NBCC and ISO6897, which have been used by Korean structural engineers. In the paper, we used a one-dimensional shaking table for horizontal vibration tests, which was mounted with a vibration house similar to a living space. Experimental results were obtained according to increasing accelerations in the range of 0.2Hz through 1.2Hz of frequency with five experimental groups, each of which was composed of eight persons. We obtained performance curves by dividing the distribution of perception from horizontal vibration tests into the ranges of 0${\sim}$25%, 26${\sim}$50%, 51${\sim}$75%, 76${\sim}$100% and then fitting the curves. Also we made a questionnaire based on human comfort criteria of foreign countries, and examined the feelings of subjects. From the results of horizontal vibration tests, it was found that acceleration of perception was low when frequency was high, and that visual and auditory senses affect the human perception for horizontal vibration of buildings.

  • PDF