• Title/Summary/Keyword: Vibrating System

Search Result 248, Processing Time 0.024 seconds

Active Vibration Control of A Cantilever Beam Using $H_2$ Controllers ($H_2$ 제어기를 이용한 외팔보의 능동 진동 제어)

  • Choi, Soo-Young;Jung, Joon-Hong;Park, Ki-Heon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.7
    • /
    • pp.401-409
    • /
    • 2003
  • This paper describes the design and the performance analysis of an $H_2$ controller for noncollocated active vibrating systems. An experiment for the active vibration control of a flexible structure is performed. The experimental model used is a cantilever beam controlled by an active damping system consisting of a laser sensor and an electromagnetic actuator. The $H_2$ controller design is based on the reduced order model and the designed system is capable of attenuating vibration without causing spillover instability. The design procedure to prevent spillover instability is described via the sensitivity analysis. The performances of the controller are verified by experimental results.

Active Vibration Control of A Cantilever Beam Using Ha Controllers (H₂제어기를 이용한 외팔보의 능동 진동 제어)

  • Choe, Su Yeong;Jeong, Jun Hong;Park, Gi Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.401-401
    • /
    • 2003
  • This paper describes the design and the performance analysis of an Ha controller for noncollocated active vibrating systems. An experiment for the active vibration control of a flexible structure is performed. The experimental model used is a cantilever beam controlled by an active damping system consisting of a laser sensor and an electromagnetic actuator. The $H_2$ controller design is based on the reduced order model and the designed system is capable of attenuating vibration without causing spillover instability, The design procedure to prevent spillover instability is described via the sensitivity analysis. The performances of the controller are verified by experimental results.

A new ultrasonic power generator using instantaneous current resultant control-based inverter and its control system

  • Kim, Dong-Hee;Kim, Young-Seok;Yoo, Dong-Wook;Kim, Yo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.631-636
    • /
    • 1987
  • The design of ultrasonic transducer energy processing systems requires highly reliable command featuring mechanical frequency tracking and constant velocity control of the ultrasonic transducer with an acoustic load. This paper presents a new conceptional instantaneous current resultant control base high-frequency inverter using self turn-off devices driving an electrostrictive ultrasonic transducer system and its optimum control technique, which is implemented by feed-back of the ultrasonic transducer applied voltage and instantaneous velocity of the transducer vibrating system through a Phase-Locked-Loop control scheme. The feedback voltage corresponding to instantaneous velocity is averaged over a half-period with respect to constant amplitude/constant velocity control strategy. Described are the theory of this signal detection technique and the experimental set-up.

  • PDF

A Study on the Analysis of Lateral Vibration of Flexible Shafting System for Propulsion and Lift in Air Cushion Vehicle (공기부양선의 추진 및 부양축계 횡진동 해석에 관한 연구)

  • Son, Seon-Tae;Kil, Byung-Lea;Cho, Kwon-Hae;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.241-249
    • /
    • 2008
  • In this study, lateral vibration analysis has been conducted on a propulsion and lift shafting system for an air cushion vehicle using ANSYS code. The shafting system is totally flexible multi-elements system including air propeller, aluminum alloy of lift fan and thin walled shaft with flexible coupling. The analysis included the lateral natural frequencies, mode shapes and harmonic analysis of the shafting system taking into account three-dimensional models for propulsion and lifting shaft system. In case of ACV the yawing and pitching rate of craft will be quite high. During yawing and pitching of craft significant gyroscopic moment will be applied to the shafting and will generate high amplitude of lateral vibration. So, such a shafting system has very intricate lateral vibrating characteristics and natural frequencies of shafting must be avoided in the range of operating revolution. The control of lateral vibration is included in this study.

A Study on the Analysis of Axial Vibration of Flexible Shafting System for Propulsion and Lift in Air Cushion Vehicle (공기부양선의 추진 및 부양축계 종진동 해석에 관한 연구)

  • Son, Seon-Tae;Kil, Byung-Lea;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.768-776
    • /
    • 2007
  • In this study, axial vibration analysis has been conducted on a propulsion and lift shafting system for an air cushion vehicle using ANSYS code. The shafting system is totally flexible multi-elements system including wood composite material of air propeller. aluminum alloy of lift fan and thin walled shaft with flexible coupling. The analysis calculated the axial natural frequencies and mode shapes of the shafting system taking into account an equivalent mass-elastic model for shafting system as well as the three-dimensional models for propeller blade and fan impeller. Such a flexible shafting system has very intricate vibrating characteristics and especially, axial natural frequencies of flexible components such as propeller blade and impeller of lift fan can be lower to the extent that causes a resonance in the range of operating revolution. The results for axial vibration analysis are presented and compared with the results of axial vibration test for lift fan conducted during Sea Trial.

A Study on the Analysis of Torsional Vibration of Branched Shafting System for Propulsion and Lift in Air Cushion Vehicle (공기부양선의 추진 및 부양축계 비틀림진동 해석 연구)

  • Son, Seon-Tae;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.335-342
    • /
    • 2007
  • A propulsion and lift shafting system in an air cushion vehicle is flexible multi-elements system which consists of two aeroderivative gas turbines with own bevel gears, four stage lift fan reduction gear, two stage propulsion reduction gear air propellers and high capacity of lifting fans. In addition, the system includes the multi-branched shafting with multi-gas turbine engines and thin walled shaft with flexible coupling. Such a branched shafting system has very intricate vibrating characteristics and especially, the thin walled shaft with flexible couplings can lower the torsional natural frequencies of shafting system to the extent that causes a resonance in the range of operating revolution. In this study, to evaluate vibrational characteristics some analytical methods for the propulsion and lift shafting system are studied. The analysis, including natural frequencies and mode shapes, for five operation cases of the system is conducted using ANSYS code with a equivalent mass-elastic model.

Resonant fatigue testing of composite rotor blades (공진현상을 이용한 복합재 블레이드의 피로시험)

  • Kee, Youngjung;Lee, Sangwon;Park, Seonkyu
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.2
    • /
    • pp.21-25
    • /
    • 2010
  • Fatigue properties of composite materials are extremely important to design durable and reliable helicopter rotor blades. However, it is very difficult to apply conventional fatigue test loads in short period. Therefore, accelerating test speed and facilitating spectrum load realization are required. In this study, we have developed a fatigue testing method that uses a resonance of simply supported beam type blade specimen. This test consists in exciting the blade specimen with a frequency that corresponds to its natural frequency. In that case, the test specimen similar to a beam fixed between two pivot points starts vibrating and is significantly deformed. Resonant fatigue tests were performed by changing exciting vertical amplitude and frequency, and S-N curves of each composite materials were successfully obtained.

  • PDF

Vibration Control of Beams Using Mechanical-Electrical Hybrid Passive Damping System (전기적-기계적 수동감쇠기를 이용한 빔의 진동제어)

  • 박철휴;안상준;박현철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.651-657
    • /
    • 2003
  • A new mechanical-electrical hybrid passive damping treatment is proposed to improve the performance of structural vibration control. The proposed hybrid passive damping system consists of a constrained layer damping treatment and a shunt circuit. In a passive mechanical constrained layer damping, a viscoelastic material damping layer is used to control the structural vibration modes in high frequency range. The passive electrical damping is designed for targeting the nitration amplitude in the low frequency range. The governing equations of motion are derived through the Hamilton's principle. The obtained mathematical model Is validated experimentally. The presented theoretical and experimental techniques provide invaluable tools for controlling the multiple modes of a vibrating structure over a wide frequency band.

Vibration Control of Beams Using Mechanical-Electrical Hybrid Passive Damping System (전기적-기계적 수동감쇠기를 이용한 빔의 진동제어)

  • 안상준;박현철;박철휴
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.362-367
    • /
    • 2003
  • A new mechanical-electrical hybrid passive dam ping treatment is proposed to improve the performance of structural vibration control. The proposed hybrid passive damping system consists of a constrained layer damping treatment and a shunt circuit. In a passive mechanical constrained layer damping, a viscoelastic material damping layer is used to control the structural vibration modes in high frequency range. The passive electrical damping is designed for targeting the vibration amplitude in the low frequency range. The governing equations of motion are derived through the Hamilton's principle. The obtained mathematical model is validated experimentally. The presented theoretical and experimental techniques provide invaluable tools for controlling the multiple modes of a vibrating structure over a wide frequency band.

  • PDF

A study on prediction of oil concentration in the R-407C and R-410A refrigeration system (대체냉매 R-407C와 R-410A를 사용하는 냉동시스템의 오일농도 예측에 관한 연구)

  • 이종문;김창년;박영무
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.384-390
    • /
    • 1999
  • A vibrating U-Tube decimeter has been evaluated as a sensor for measuring the concentration of oil in the liquid line of a refrigeration system. Calibration and performance tests were conducted under simulated liquid-line conditions for R-407C/POE oil and R-410A/POE oil mixtures in oil concentration from 0 to 15 weight percent. Test temperatures ranged from 20 to 5$0^{\circ}C$. As a result of test, oil concentration correlations are presented in terms of specific gravity at each constant temperature. These equations enable to predict the oil concentration without any extraction of the mixture, and can be applied for R-407C/POE oil and R-410A/POE oil mixtures.

  • PDF