• Title/Summary/Keyword: Vertically-aligned carbon nanotubes

Search Result 63, Processing Time 0.035 seconds

Effect of Ammonia on Alignment of Carbon Nanotubes in Thermal Chemical Vapor Deposition (촉매 금속을 이용한 열화학 기상 증착법에서 탄소 나노튜브의 수직배향 합성에 대한 암모니아의 역할)

  • Hong, Sang-Yeong;Jo, Yu-Seok;Choe, Gyu-Seok;Kim, Do-Jin;Kim, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.697-702
    • /
    • 2001
  • Effects of ammonia treatment on the morphologies of the catalytic metal films and carbon nanotubes subsequently synthesized via a thermal chemical vapor deposition method were investigated. An optimally controlled thermo-chemical process of ammonia treatment gave rise to a morphology of a dense distribution of vertically aligned carbon nanotubes. $NH_3$ treatment is a crucial key process to obtain vertically aligned carbon nanotubes. However, it was realized by a simple $NH_3$ treatment during synthesis at temperatures of $800-900^{\circ}C$ without any extra process. The structure and morphology of carbon nanotubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy.

  • PDF

Growth of vertically aligned carbon nanotubes on a large area silicon substrates by chemical vapor deposition (CVD 에 의한 대면적 실리콘기판위에서 수직방향으로 정렬된 탄소나노튜브의 성장)

  • Lee, Cheol-Jin;Park, Jeong-Hoon;Son, Kwon-Hee;Kim, Dae-Woon;Lee, Tae-Jae;Lyu, Seung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.860-862
    • /
    • 1999
  • we have grown vertically aligned carbon nanotubes on a large area of Co-Ni codeposited Si substrates by thermal chemical vapor deposition using $C_{2}H_{2}$ gas. The carbon nanotubes grown by the thermal chemical vapor deposition are multi-wall structure, and the wall solace of nanotubes is covered with defective carbons or carbonaceous particles. The carbon nanotubes range from 50 to 120nm in diameter and about $130{\mu}m$ in length at $950^{\circ}C$. The turn-on voltage was about $0.8V/{\mu}m$ with a current density of $0.1{\mu}A/cm^2$ and emission current reveals the Fowler-Nordheim mode.

  • PDF

Growth of Vertically Aligned CNTs with Ultra Thin Ni Catalysts

  • Ryu, Je-Hwang;Yu, Yi-Yin;Lee, Chang-Seok;Jang, Jin;Park, Kyu-Chang;Kim, Ki-Seo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.62-66
    • /
    • 2008
  • We report on the growth mechanism of vertically aligned carbon nanotubes (VACNTs) using ultra thin Ni catalysts and direct current plasma enhanced chemical vapor deposition (PECVD) system. The CNTs were grown with -600 V bias to substrate electrode and catalyst thickness variation of 0.07 nm to 3 nm. The CNT density was reduced with catalyst thickness reduction and increased growth time. Cone like CNTs were grown with ultra thin Ni thickness, and it results from an etch of carbon network by reactive etchant species and continuous carbon precipitation on CNT walls. Vertically aligned sparse CNTs can be grown with ultra thin Ni catalyst.

Carbon Nanotube Synthesis with High Purity by Introducing of NH3 Etching Gas (암모니아 식각 가스 도입에 의한 고순도 탄소나노튜브의 합성)

  • Lee, Sunwoo;Lee, Boong-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.782-785
    • /
    • 2013
  • Multi-walled carbon nanotubes were synthesized on Ni catalyst using thermal chemical vapor deposition. By introducing ammonia gas during the CNT synthesis process, clean and vertically aligned CNTs without impurities could be prepared. As the ammonia gas increased a partial pressure of hydrogen in the mixed gas during the CNT synthesis process, we could control the CNT synthesis rate appropriately. As the ammonia gas has an etching ability, amorphous carbon species covering the catalyst particles were effectively removed. Therefore catalyst particles could maintain their catalytic state actively during the synthesis process. Finally, we could obtain clean and vertically aligned CNTs by introducing $NH_3$ gas during the CNT synthesis process.

Preparation of Multi-Wall Carbon Nanotubes by Floating Catalyst Method

  • Song, Hee-Suk;Kang, Eun-Jin;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.3 no.1
    • /
    • pp.25-32
    • /
    • 2002
  • Aligned multi-wall carbon nanotubes (MWNTs) were synthesized through the catalytic decomposition of hydrocarbons in a quartz tube reactor. In this study, we investigated the influence of reaction parameters such as gas flow rate, ferrocene-xylene ratio and partial pressure, and reaction time on the yield and structure of vertically aligned carbon nanotubes produced by the floating catalyst method. The MWNTs produced had diameters in the range of 20~l00 nm, length around $100{\mu}m$ and bulk density about $0.51g/cm^3$ at a pressure of l0000 psi. It was possible to produce MWNTs with much faster growth rate of $12{\mu}m/min$ than that reported previously by the increase of ferrocene-xylene partial pressure.

  • PDF

Electrochemical Capacitors Based on Aligned Carbon Nanotubes Directly Synthesized on Tantalum Substrates

  • Kim, Byung-Woo;Chung, Hae-Geun;Min, Byoung-Koun;Kim, Hong-Gon;Kim, Woong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3697-3702
    • /
    • 2010
  • We demonstrate that vertically aligned carbon nanotubes can be synthesized directly on tantalum substrate via water-assisted chemical vapor deposition and evaluate their properties as electrochemical capacitors. The mean diameter of the carbon nanotubes was $7.1{\pm}1.5\;nm$, and 70% of them had double walls. The intensity ratio of G-band to D-band in Raman spectra was as high as 5, indicating good quality of the carbon nanotubes. Owing to the alignment and low equivalent series resistance, the carbon nanotube based supercapacitors showed good rate performance. Rectangular shape of cyclic voltammogram was maintained even at the scan rate of > 1 V/s in 1 M sulfuric acid aqueous solution. Specific capacitance was well-retained (~94%) even when the discharging current density dramatically increased up to 145 A/g. Consequently, specific power as high as 60 kW/kg was obtained from as-grown carbon nanotubes in aqueous solution. Maximum specific energy of ~20 Wh/kg was obtained when carbon nanotubes were electrochemically oxidized and operated in organic solution. Demonstration of direct synthesis of carbon nanotubes on tantalum current collectors and their applications as supercapacitors could be an invaluable basis for fabrication of high performance carbon nanotube supercapacitors.

Ni-Grain Size Dependent Growth of Vertically Aligned Carbon Nanotubes by Microwave Plasma-Enhanced Chemical Vapor Deposition and Field Emission Properties

  • Choi, Young-Chul;Jeon, Seong-Ran;Park, Young-Soo;Bae, Dong-Jae;Lee, Young-Hee;Lee, Byung-Soo;Park, Gyeong-Su;Choi, Won-Bong;Lee, Nae-Sung;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.231-234
    • /
    • 2000
  • Vertically aligned carbon nanotubes were synthesized on Ni-coated Si substrates using microwave plasma-enhanced chemical vapor deposition. The grain size of Ni thin films was varied with the RF power density during the RF magnetron sputtering process. It was found that the diameter, growth rate, and density of carbon nanotubes could be controlled systematically by the grain size of Ni thin films. With decreasing the grain size of Ni thin films, the diameter of the nanotubes decreased, whereas the growth rate and density increased. High-resolution transmission electron microscope images clearly demonstrated synthesized nanotubes to be multiwalled. The number of graphitized wall decreased with decreasing the diameter. Field emission properties will be further presented.

  • PDF

Growth and Characterization of Vertically well Aligned Crbon Nanotubes on Glass Substrate by Plasma Enhanced Hot Filament Chemical Vapor deposition

  • Park, Chong-Yun;Yoo, Ji-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.210-210
    • /
    • 2000
  • Vertically well aligned multi-wall carbon nanotubes (CNT) were grown on nickel coated glass substrates by plasma enhanced hot filament chemical vapor deposition at low temperatures below 600$^{\circ}C$. Acetylene and ammonia gas were used as the carbon source and a catalyst. Effects of growth parameters such as pre-treatment of substrate, plasma intensity, filament current, imput gas flow rate, gas composition, substrate temperature and different substrates on the growth characteristics of CNT were systematically investigated. Figure 1 shows SEM image of CNT grown on Ni coated glass substrate. Diameter of nanotube was 30 to 100nm depending on the growth condition. The diameter of CNT decreased and density of CNT increased as NH3 etching time etching time increased. Plasma intensity was found to be the most critical parameter to determine the growth of CNT. CNT was not grown at the plasma intensity lower than 500V. Growth of CNT without filament current was observed. Raman spectroscopy showed the C-C tangential stretching mode at 1592 cm1 as well as D line at 1366 cm-1. From the microanalysis using HRTEM, nickel cap was observed on the top of the grown CNT and very thin carbon amorphous layer of 5nm was found on the nickel cap. Current-voltage characteristics using STM showed about 34nA of current at the applied voltage of 1 volt. Electron emission from the vertically well aligned CNT was obtained using phosphor anode with onset electric field of 1.5C/um.

  • PDF

Vertically aligned carbon nanotubes grown on various substrates by plasma enhanced chemical vapor deposition

  • Han, Jae-hee;Moon, Byung-Sik;Yang, Won-Suk;Yoo, Ji-Beom;Park, Chong-Yun;Han, In-Taek;Lee, Nae-Sung;Kim, Chong-Min;Kim, Tae-Il
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.2
    • /
    • pp.121-125
    • /
    • 1999
  • Vertically well aligned multiwall carbon nanotubes were grown on nickel coated different substrates by plasma enhanced hot filament chemical vapor deposition at low temperatures below 650$^{\circ}C$. Acetylene and ammonia gas were used as the carbon source and a catalyst. The surface roughness of nickel layer increased as NH3 etching time increased. The diameters of the nanotubes decreased and the density of nanotubes increased as NH3 etching time increased. diameter of nanotube was 30 to 70 nm. Nickel cap was observed on the top of the grown nanotube and very thin carbon amorphous layer was fonde on the nickel cap.

  • PDF

Field emission lamp for LCD backlight based on RGB phosphors and vertically-aligned CNTs

  • Park, Boo-Won;Choi, Nam-Sik;Kim, Sung-Hoon;Jeong, Yun-Tae;Kim, Jong-Su
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1545-1546
    • /
    • 2007
  • Zinc gallate-based RGB phosphors and vertically aligned carbon nanotube emitters are prepared for flat field-emission lamp. The blend phosphors of blue $ZnGa_2O_4$, green $ZnGa_2O_4:Mn^{2+}$ and red $ZnGa_2O_4:Cr^{3+}$ are coated on the front glass, and the carbon nanotubes are chemically bonded on the rear ITO glass as a cathode.

  • PDF