• Title/Summary/Keyword: Vertical curvature

Search Result 141, Processing Time 0.025 seconds

Development of mobile vehicle designed by the guideline of wall-climbing mobile robot using permanent magnetic wheels (영구자석바퀴를 이용한 벽면 이동로봇의 설계치침에 의한 이동체 개발)

  • 한승철;이화조;김은찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1676-1681
    • /
    • 2003
  • The attachment of mobile vehicle is necessary for the automated operation on the inclined or vertical walls of steel structures. Since the vehicle requires attaching devices additionally, its overall efficiency can be reduced by the devices. Therefore, external shapes of mobile vehicles have to be researched to give the effective movement on the vertical face. For the design of mobile vehicle, the guideline has been derived from the modeling of wall-climbing, so that the vehicle should have a specific external shape for vertical movement due to the gravitational force. Hence, some adequate arrangement of attaching device to the mobile vehicle has been presented for the effective movement. In the experiments with four permanent magnetic wheels, a plausible result was achieved as a vertical attaching force of 185.2(N), a friction force of 153.8(N) and a curvature radius of 1.4m. The mobile vehicle should be modified according to the proposed design guideline. and then it could be applied to a specific operation as an appropriate external shape. Also, Further research is recommended on an optimal posture and a moving method in a specific application. as the attaching force ortho vehicle can be affected by its posture.

  • PDF

Study on the Design Constraints of the Wall-Climbing Mobile Robot Using Permanent Magnetic Wheels (Part 2- Design of Mobile Vehicle) (영구 자석 바퀴를 이용한 벽면 이동 로봇의 설계시의 제약 사항들에 대한 연구 (Part 2- 이동체 설계))

  • 한승철;이화조;김은찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.77-84
    • /
    • 2004
  • The attachment of mobile vehicle is necessary for the automated operation on the inclined or vertical walls of steel structures. Since the vehicle requires attaching devices additionally, its overall efficiency can be reduced by the devices. Therefore, external shapes of mobile vehicles have to be researched to give the effective movement on the vertical face. For the design of mobile vehicle, the guideline has been derived from the modeling of wall-climbing, so that the vehicle should have a specific external shape for vertical movement due to the gravitational force. Hence, some adequate arrangement of attaching device to the mobile vehicle has been presented for the effective movement. In the experiments with four permanent magnetic wheels, a plausible result was achieved as a vertical attaching force of 185.2(N), a friction force of 153.8(N) and a curvature radius of 1.4m. The mobile vehicle should be modified according to the proposed design guideline, and then it could be applied to a specific operation as an appropriate external shape. Also, Further research is recommended on an optimal posture and a moving method in a specific application, as the attaching force of the vehicle can be affected by its posture.

Evaluation of Running Safety and Ride Comfort for High Speed Train in Cases of Superimposition of Vertical and Horizontal Curves (종곡선과 평면곡선의 경합조건별 차량주행안전성 및 승차감 평가)

  • Um, Ju-Hwan;Choi, IL-Yoon;Kim, Man-Cheol
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.4
    • /
    • pp.311-317
    • /
    • 2013
  • In railway construction, superimposition of horizontal and vertical curves has critical effects on the running stability and the ride comfort of vehicles as well as on construction costs. In this study, running safety, ride comfort, and track acting forces were analyzed by a numerical analysis using the VAMPIRE program according to cases of superimposition of vertical and horizontal curves. From the analysis results, it was found that running safety, riding comfort, and track acting forces in the case of superimposition of vertical and horizontal curves as well as vertical and transition curves meet all of the criteria. Also, in the case of the superimposition of vertical curves and curvature change between horizontal transition curves and circular curves meet all of the criteria.

Generalized Lateral Load-Displacement Relationship of Reinforced Concrete Shear Walls (철근콘크리트 전단벽의 횡하중-횡변위 관계의 일반화)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.159-169
    • /
    • 2014
  • This study generalizes the lateral load-displacement relationship of reinforced concrete shear walls from the section analysis for moment-curvature response to straightforwardly evaluate the flexural capacity and ductility of such members. Moment and curvature at different selected points including the first flexural crack, yielding of tensile reinforcing bar, maximum strength, 80% of the maximum strength at descending branch, and fracture of tensile reinforcing bar are calculated based on the strain compatibility and equilibrium of internal forces. The strain at extreme compressive fiber to determine the curvature at the descending branch is formulated as a function of reduction factor of maximum stress of concrete and volumetric index of lateral reinforcement using the stress-strain model of confined concrete proposed by Razvi and Saatcioglu. The moment prediction models are simply formulated as a function of tensile reinforcement index, vertical reinforcement index, and axial load index from an extensive parametric study. Lateral displacement is calculated by using the moment area method of idealized curvature distribution along the wall height. The generalized lateral load-displacement relationship is in good agreement with test result, even at the descending branch after ultimate strength of shear walls.

SHARP INEQUALITIES INVOLVING THE CHEN-RICCI INEQUALITY FOR SLANT RIEMANNIAN SUBMERSIONS

  • Mehmet Akif Akyol;Nergiz (Onen) Poyraz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1155-1179
    • /
    • 2023
  • Main objective of the present paper is to establish Chen inequalities for slant Riemannian submersions in contact geometry. In this manner, we give some examples for slant Riemannian submersions and also investigate some curvature relations between the total space, the base space and fibers. Moreover, we establish Chen-Ricci inequalities on the vertical and the horizontal distributions for slant Riemannian submersions from Sasakian space forms.

Experimental investigation into brick masonry arches' (vault and rib cover) behavior reinforced by FRP strips under vertical load

  • Takbash, Majid Reza;Morshedi, Abbas Ali Akbarzadeh;Sabet, Seyyed Ali
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.481-492
    • /
    • 2018
  • The current experimental study is the reinforcement of the simple curvature vault masonry structures. In this study, we discuss complex structure include vault and rib cover with two radii and actual dimensions under a vertical load. The unreinforced structure data were compared with analysis data. The analysis data are in good agreement with experimental data. In the first experiment, a structure without reinforcement is tested and according to the test results, the second structure was reinforced using the carbon polymer fibers and the same test is done to see the effects of reinforcement. Based on the test results of the first structure, the first cracks are created in the vault. Moreover, the reinforcement with carbon fibers will increase the loading capacity of the structure around 35%.

Underwater explosion and its effects on nonlinear behavior of an arch dam

  • Moradi, Melika;Aghajanzadeh, Seyyed Meisam;Mirzabozorg, Hasan;Alimohammadi, Mahsa
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.333-351
    • /
    • 2018
  • In the present paper, the behavior of the Karaj double curvature arch dam is studied focusing on the effects of structural nonlinearity on the responses of the dam body when an underwater explosion occurred in the reservoir medium. The explosive sources are located at different distances from the dam and the effects of the cavitation and the initial shock wave of the explosion are considered. Different amount of TNT are considered. Two different linear and nonlinear behavior are assumed in the analysis and the dam body is assumed with and without contraction joints. Radial, tangential and vertical displacements of the dam crest are obtained. Moreover, maximum and minimum principal stress distributions are plotted. Based on the results, the dam body responses are sensitive to the insertion of joints and constitutive model considered for the dam body.

Parametric Study on Thermal Buckling of CWR Tracks (장대레일궤도의 온도좌굴에 영향을 미치는 매개변수 연구)

  • 최동호;김호배
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.295-302
    • /
    • 2001
  • The lateral stability of curved continuous welded rail (CWR) is studied fur buckling prevention. This study includes the influences of vehicle induced loads on the thermal buckling behavior of straight and curved CWR tracks. quasi-static loads model is assumed to determine the uplift region, which occurs due to the vertical track deformation induced by wheel loads of vehicle. Parametric numerical analyses are performed to calculate the upper and lower critical buckling temperatures of CWR tracks. The parameters include track lateral resistance, track curvature, longitudinal stiffness, tie-ballast friction coefficient, axle load, truck center spacing, and the ratio of lateral to vertical vehicle load. This study provides a guideline for the improvement or stability for dynamic buckling in on tracks.

  • PDF

Characterization of Surfaces by Contact Angle Goniometry - II . Effect of Curvature on Contact Angle - (접촉각 측정에 의한 표면의 특성연구( II ) -섬유나 막대의 직경이 접촉각에 미치는 영향-)

  • Park Chung Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.15 no.4 s.40
    • /
    • pp.437-445
    • /
    • 1991
  • The effect of diameter of rods or fibers on contact angle was studied in a vertical rod configuration. A contact angle measuring device described in the previous paper was optimized for the measurement of small-diameter fibers. It was shown that contact angles of water and hexadecane on nylon 6 monofilsments and glass rods increased with decrease of diameter below a critical diameter, which varied from one system to another. Beyond the critical value, contact angle of the liquid on the vertical glass rod reached to an equilibrium value which is equal to the unique value of the contact angle of the liquid drop on the horizontal glass plate.

  • PDF

Velocity Field Measurement of Flow Around a Surface-Mounted Vertical Fence Using the Two-Frame PTV System (2-프레임 PTV를 이용한 수직벽 주위 유동장 해석)

  • Baek, Seung-Jo;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1340-1346
    • /
    • 1999
  • The turbulent shear flow around a surface-mounted vertical fence was investigated using the two-frame PTV system. The Reynolds number based on the fence height(H) was 2950. From this study, it is revealed that at least 400 instantaneous velocity field data are required for ensemble average to get reliable turbulence statistics, but only 100 field data are sufficient for the time-averaged mean velocity information. Various turbulence statistics such as turbulent intensities, turbulence kinetic energy and Reynolds shear stress were calculated from 700 instantaneous velocity vector fields. The fence flow has an unsteady recirculation region behind the fence, followed by a slow relaxation to the flat-plate boundary layer flow. The time-averaged reattachment length estimated from the streamline distribution is about 11.2H. There exists a region of negative Reynolds shear stress near the fence top due to the highly convex (stabilizing) streamline-curvature of the upstream flow. The large eddy structure in the separated shear layer seems to have significant influence on the development of the separated shear layer and the reattachment process.