• Title/Summary/Keyword: Vertical change

Search Result 1,398, Processing Time 0.031 seconds

STABILITY OF OBWEGESER II METHOD IN MANDIBULAR PROGNATHIC OR ANTERIOR OPEN BITE PATIENTS (하악전돌증 및 개교합 환자에 있어 Obwegeser Ⅱ method의 안정성)

  • Jung, Chang-Wook;Nam, Jeong-Hun;Lee, Sang-Han;Kwon, Tae-Geon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.1
    • /
    • pp.25-33
    • /
    • 2004
  • The purpose of this study was to evaluate the postoperative stability of the severe open bite or mandibular prognathic patients after mandibular set back surgery by Obwegeser II method. There were 19 patients who had been undergone Obwegeser II method. The horizontal and vertical position of the cephalometric points were measured preoperation and immediate postoperation, postoperative 1 month, postoperative 6 months ; were analyzed by linear measurement to evaluate changes in skeletal landmark and the relapse was compared between open bite group and prognathism group. By the operation, horizontal change of B was $6.84{\pm}4.35mm$ and vertical change of B was $6.28{\pm}3.25mm$ in open bite group and horizontal change of B was $14.20{\pm}4.81mm$ and vertical change of B was $1.99{\pm}2.66mm$ in prognathism group, horizontal change of Pog was $3.82{\pm}5.71mm$ and vertical change of Pog was $5.38{\pm}2.11mm$ in open bite group and horizontal change of Pog was $13.24{\pm}5.99mm$ and vertical change of Pog was $1.91{\pm}0.94mm$ in prognathism group. Between immediate postoperation and postoperative 1 month, all skeletal landmarks change was no statistical difference (p>0.05) and there were no statistical difference between open bite group and prognathism group except x-Me landmark (p>0.05). Between postoperative 1 month and 6 months, horizontal change of B was $0.12{\pm}1.35mm$ and vertical change of B was $1.47{\pm}1.48mm$ in open bite group and horizontal change of B was $1.43{\pm}1.35mm$ and vertical change of B was $0.82{\pm}1.99mm$ in prognathism group, horizontal change of Pog was $0.13{\pm}1.40mm$ and vertical change of Pog was $0.88{\pm}1.71mm$ in open bite group and horizontal change of Pog was $1.08{\pm}1.74mm$ and vertical change of Pog was $0.47{\pm}1.57mm$ in prognathism group (p>0.05) and there were no statistical difference between open bite group and prognathism group (p>0.05). Between immediate postoperation and postoperative 6months, horizontal change of B was $0.24{\pm}1.17mm$ and vertical change of B was $1.87{\pm}1.63mm$ in open bite group and horizontal change of B was $1.54{\pm}1.55mm$ and vertical change of B was $1.04{\pm}1.96mm$ in prognathism group, horizontal change of Pog was $0.91{\pm}1.46mm$ and vertical change of Pog was $1.18{\pm}2.05mm$ in open bite group and horizontal change of Pog was $0.96{\pm}1.62mm$ and vertical change of Pog was $1.23{\pm}2.35mm$ in prognathism group (p>0.05) and there were statistical difference between open bite group and prognathism group in x-B, x-Pog, x-Gn, x-Me (p<0.05). Obwegeser II method is considered as one of the best operation when surgical correction of severe open bite or severe mandibular prognathism is needed.

A Study on the Change of Waist Pattern by Upper Limb Motion -By the Method of Tight Fitting Technique- (상지동작에 따른 길의 변화에 관한 연구 -입체재단법을 중심으로-)

  • 이은정;박정순
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.1
    • /
    • pp.113-127
    • /
    • 1996
  • In this study, the pattern was copied by the method of Tight Fitting Techinque, which resulted from the changed body by the upper limb motion-front-vertical motion(or vertical motion in front), side-vertical motion, and horizontal motion. And, this study analyzed the change of the pattern and the observed items dimension changed to the pattern. The results are as follows: 1. In the observation of the degree of the pattern change according to the motion of upper limb, the result provides that the motion change in the range of $135^{\circ}$ to $180^{\circ}$ is the largest in front-vertical motion, $45^{circ}~90^{\circ}$ in side-vertical motion, and $0^{circ}~45^{\circ}$ in horizontal motion respectively. 2. The probability test result of the items of the motion is more related with the horizontal width item rather than the vertical length item in the front and back pattern where the back pattern has more effect than the front pattern. And the upper limb-surrounding items are more related than any otheer item. 3. The change of the pattern according to the motion shows the decrese of the neck width and the shoulder legth, the rising of the point of shoulder (or shoulder point) and armpit point, the decrease of the pattern width and the increase of the pattern length. As the angle of the motion grows vertically motion. The change of the shoulder length in the horizontal motion is smaller than that vertical. But as the angle of the motion grows horizontally, it has a tendency of decreas in th width of the front patten and the length of the pattern, whereas the width of the back pattern is noticeably increases.

  • PDF

A Study on the Effect of the Wax Extension Method of Posterior Palatal Seal on the Vertical Occlusal Change of Processed Dentures (상악 시적의치의 후연 연장방법이 Resin 의치상의 변형에 미치는 영향에 관한 실험적 연구)

  • Oh, Sea-Yoon
    • Journal of Technologic Dentistry
    • /
    • v.6 no.1
    • /
    • pp.5-10
    • /
    • 1984
  • This experimental study was performed to investigate the effect of the wax extension method of posterior palatal seal area, introduced by Vig, on the amount of the vertical occlusal change of processed dentures. Twenty samples of maxillary wax trial dentures were constructed. Among them, the posterior palatall seal of ten samples were extended with wax over the posterior wall of the cast while that of the other ten were not. Then all were processed with self-curing resin and the amount of the vertical occlusal change was compared. The obtained result was that this method was proved to be effective in reducing the amount of the vertical occlusal change occuring in denure proccsing.

  • PDF

A study on heat transfer during solidification of phase change material on a finned vertical cooling tube (휜붙이 수직냉각관 주위의 상변화물질에서 응고열전달에 관한 연구)

  • 정석주;송하진
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.33-41
    • /
    • 1996
  • Experiments were performed to study solidification of phase change material on a finned vertical tube when either conduction In the solid or natural convection in a liquid controls the heat transfer. The liquid was housed in a cylindrical containment vessel whose surface was maintained at a uniform, time-invariment temperature during a data run, and the solidification occurred at a finned and unfinned vertical tube positioned along the axis of the vassel. The phase change material(PCM) employed in this experiment is 99 percent pure n-Octacosan paraffin($C -{28}H_{58}/$). For conduction-controlled and convection-controlled solidification, the enhancement of the solidified mass rate due to finning is great when the solidified layer is thin and decreases as the layer grows thicker. It is studied that the latent energy($E_{\lambda}$) is the largest contributor to the total extracted energy($E_{\lambda} + E_{sl}+E_{s2}$) and the total extracted energy rate at a finned vertical tube is greater than that at a unfinned vertical tube.

  • PDF

Vertical Limb Stiffness Increased with Gait Speed in the Elderly (노인군 보행 속도 증가에 따른 하지 강성 증가)

  • Hong, Hyun-Hwa;Park, Su-Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.687-693
    • /
    • 2011
  • Spring-mass models have been widely accepted to explain the basic dynamics of human gait. Researchers found that the leg stiffness increased with gait speed to increase energy efficiency. However, the difference of leg stiffness change with gait speed between the young and the elderly has not been verified yet. In this study, we calculated the lower limb stiffness of the elderly using walking model with an axial spring. Vertical stiffness was defined as the ratio of the vertical force change to the vertical displacement change. Seven young and eight elderly subjects participated to the test. The subjects walked on a 12 meter long, 1 meter wide walkway at four different gait speeds, ranging from their self-selected speed to maximum speed randomly. Kinetic and kinematic data were collected using three force plates and motion capture cameras, respectively. The vertical stiffness of the two groups increased as a function of walking speed. Maximum walking speed of the elderly was slower than that of the young, yet the walking speed correlated well with the optimal stiffness that maximizes propulsion energy in both groups. The results may imply that human may use apparent limb stiffness to optimize energy based on spring-like leg mechanics.

Countermovement Jump Strategy Changes with Arm Swing to Modulate Vertical Force Advantage

  • Kim, Seyoung
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.141-147
    • /
    • 2017
  • Objective: We obtained force-displacement curves for countermovement jumps of multiple heights and examined the effect of an arm swing on changes in vertical jumping strategy. Countermovement jumps with hands on hips (Condition 1) and with an arm swing (Condition 2) were evaluated to investigate the mechanical effect of the arm movement on standing vertical jumps. We hypothesized that the ground reaction force (GRF) and/or center of mass (CoM) motion resulting from the countermovement action would significantly change depending on the use of an arm swing. Method: Eight healthy young subjects jumped straight up to five different levels ranging from approximately 10% (~25 cm) to 35% (~55 cm) of their body heights. Each subject performed five sets of jumps to five randomly ordered vertical elevations in each condition. For comparison of the two jumping strategies, the characteristics of the boundary point on the force-displacement curve, corresponding to the vertical GRF and the CoM displacement at the end of the countermovement action, were investigated to understand the role of arm movement. Results: Based on the comparison between the two conditions (with and without an arm swing), the subjects were grouped into type A and type B depending on the change observed in the boundary point across the five different jump heights. For both types (type A and type B) of vertical jumps, the initial vertical force at the start of push-off significantly changed when the subjects employed arm movement. Conclusion: The findings may imply that the jumping strategy does change with the inclusion of an arm swing, predominantly to modulate the vertical force advantage (i.e., the difference between the vertical force at the start of push-off and the body weight).

Heat Transfer in Heat Storage System with P.C.M. - Inward Melting in a Vertical Tube (상변화 물질을 사용한 축열조에서의 열전달 - 수직원관에서의 내향용융 실험 -)

  • Shon, H.S.;Hwang, T.I.;Lee, C.M.;Choi, G.G.;Yim, C.S.
    • Solar Energy
    • /
    • v.9 no.1
    • /
    • pp.53-61
    • /
    • 1989
  • In the present investigation, experiments on the melting of a phase change material were performed to research heat transfer phenomena generated by means of conduction and natural convection in the vertical tube at inward melting. The phase change material used in the experiments is 99 percent pure n-Docosane paraffin which is measured melting temperature of $42.5^{\circ}C$, latent heat of 37.5 cal/g, heat conductivity of $0.1505W/m^{\circ}C$. Experiments were performed both in the no-subcooling which is initiating it at melting temperature of phase change material, and in the subcooling which means to initiate it under melting temperature of phase change material, in order to compare and investigate the horizontal temperature history, vertical temperature history, ratio of melting and melted mass, figure of the melting front in the vertical tube. In the experimental results, heat transfer from tube wall to phase change material were due to conduction at early stage and due to natural convection with the passage of time, and then occurred melting downward from surface by volumetric expansion. Natural convection affects temperature distribution in the tube, ratio of melting and melted mass, figure of the melting front and then progress rapidly in case of nosubcooling compared to subcooling.

  • PDF

Scaling Down Characteristics of Vertical Channel Phase Change Random Access Memory (VPCRAM)

  • Park, Chun Woong;Park, Chongdae;Choi, Woo Young;Seo, Dongsun;Jeong, Cherlhyun;Cho, Il Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.48-52
    • /
    • 2014
  • In this paper, scaling down characteristics of vertical channel phase random access memory are investigated with device simulator and finite element analysis simulator. Electrical properties of select transistor are obtained by device simulator and those of phase change material are obtained by finite element analysis simulator. From the fusion of both data, scaling properties of vertical channel phase change random access memory (VPCRAM) are considered with ITRS roadmap. Simulation of set reset current are carried out to analyze the feasibility of scaling down and compared with values in ITRS roadmap. Simulation results show that width and length ratio of the phase change material (PCM) is key parameter of scaling down in VPCRAM. Thermal simulation results provide the design guideline of VPCRAM. Optimization of phase change material in VPCRAM can be achieved by oxide sidewall process optimization.

Temperature Properties of Vertical Reinforcements in Wall Structures in Relation to the Different Methods of Bubble Sheet Installation in Winter (겨울철 버블시트 포설방법 변화에 따른 벽식구조 수직철근의 온도 특성)

  • Kim, Tae-Woo;Lee, Jea-Hyeon;Kyung, Yeong-Hyeok;Lee, Jong-Gyo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.11-12
    • /
    • 2017
  • This study aims to analyze the properties of the temperature change in vertical reinforcements in outdoor wall structures in winter in relation to the different methods of bubble sheet installation, and to subsequently determine the possibility of initial frost damage to the concrete as a result of low temperature. As for the experimental variables, double bubble sheets were used as curing materials, and the curing method was to model the part where the slab and the wall intersect and the rebar is exposed, and to measure the change of temperature around the exposed rebar in accordance with the change of the coating curing. It was found that by employing curing method B, which is to install the bubble sheet between the vertical reinforcements, the most vulnerable area, which is 50mm below(④) the surface of the concrete, would be lowered to sub-zero temperature 20 hours later than when using curing method A, and that therefore it is more effective to install the bubble sheet between the vertical reinforcements for the prevention of initial frost damage.

  • PDF

Mapping vertical bridge deformations to track geometry for high-speed railway

  • Gou, Hongye;Ran, Zhiwen;Yang, Longcheng;Bao, Yi;Pu, Qianhui
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.467-478
    • /
    • 2019
  • Running safety and ride comfort of high speed railway largely depend on the track geometry that is dependent on the bridge deformation. This study presents a theoretical study on mapping the bridge vertical deformations to the change of track geometry. Analytical formulae are derived through the theoretical analysis to quantify the track geometry change, and validated against the finite element analysis and experimental data. Based on the theoretical formulae, parametric studies are conducted to evaluate the effects of key parameters on the track geometry of a high speed railway. The results show that the derived formulae provide reasonable prediction of the track geometry change under various bridge vertical deformations. The rail deflection increases with the magnitude of bridge pier settlement and vertical girder fault. Increasing the stiffness of the fasteners or mortar layer tends to cause a steep rail deformation curve, which is undesired for the running safety and ride comfort of high-speed railway.