• 제목/요약/키워드: Vertical Wind Turbine

검색결과 160건 처리시간 0.029초

수직축 풍력터빈 블레이드의 공기역학적 특성 (Aerodynamic characteristics of a vertical axis wind turbine blade)

  • 신지영;손영석;차득근;이철균;황이철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권8호
    • /
    • pp.877-884
    • /
    • 2006
  • The objective of this study is to investigate the aerodynamic characteristics of a vertical axis wind turbine blade as the basic study of a design of a vertical axis wind turbine. The lift and drag coefficients of the various shape of the vortical axis wind turbine blades are analyzed and compared using the CFD code Fluent. To validate the numerical analysis, the predicted results of the Fluent are compared with those of the Xfoil code and the experimental results. We conclude that the program Fluent can be used to predict the aerodynamics of the wind turbine blade. By comparing the predicted results of the aerodynamic characteristics of the different shape of the blades, an appropriate shape of the blade is suggested to design the vortical axis wind turbine blade.

횡류형 수직축 풍력터빈 개발에 관한 연구 (A Study on the Development of Cross-flow Type Vertical Axis Wind Turbine)

  • 황영철;최영도;김일수;이영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.493-493
    • /
    • 2009
  • Recently, small vertical axis wind turbine attracts attention because of its clean, renewable and abundant energy resources to develop. Therefore, a cross-flow type wind turbine is proposed for small wind turbine development in this study because the turbine has relatively simple structure and high possibility of applying to small wind turbine. The purpose of this study is to investigate the effect of the turbine‘s structural configuration on the performance and internal flow characteristics of the cross-flow turbine model using CFD analysis. The results show that guide nozzle should be adopted to improve the performance of the turbine. Optimization of the nozzle shape will be key-importance for the high performance of the turbine.

  • PDF

이중 날개 형태의 소형 수직축 풍력터빈의 공기 역학적 특성 (Aerodynamic characteristics of a small vertical axis wind turbine with dual blade type)

  • 박병호;김종식;임종호;임종빈;이승호;이진현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.63.2-63.2
    • /
    • 2011
  • The objective of this study is to investigate the aerodynamic characteristics of a small vertical axis wind turbine with dual blade type. The Wind turbine with dual blade has various angle of attack. so this turbine improve starting characteristics. The various arrangement of the vertical axis wind turbine with dual blade is designed. Among them, it shows superior quality that is arranged in three rows. Among arrangement in three rows, we use general computational fluid dynamics program CFX to find out the optimal arrangement. By comparing the predicted results of the aerodynamic characteristics of the different arrangement of the blades, an appropriate arrangement of the blade is suggested to design the small wind turbine blade.

  • PDF

다변풍속 적응형 Darrieus-Sauonius 초합 수직푹 풍력발전 시스템의 설계 (A design of vertical axis wind power generating system combined with Darrieus-Savonius for adaptation of variable wind speed)

  • 서영택;오철수
    • 대한전기학회논문지
    • /
    • 제45권2호
    • /
    • pp.185-192
    • /
    • 1996
  • This paper presents a design of vertical axis Darrieus wind turbine combine with Savonius for wind-power generating system to be adapted for variable wind speed. The wind turbine consists of two troposkien- and four Savonius-blades. Darrieus turbine is designed with diameter 9.4[m], chord length 380[mm], tip speed ratio 5. Savonius turbine is designed with diameter 1.8[m], height 2[m], tip speed ratio 0.95. The design of turbine is laid for the main data of rated wind speed 10[m/s], turbine speed 101.4[rpm]. The generating power is estimated to maximum power 20[kW], and this is converted to commercial power line by means of three phase synchronous generator-inverter system. Generating system is designed for operation on VSVF(variable speed variable frequency) condition and constant voltage system.

  • PDF

Development of Flapping Type Wind Turbine System for 5 kW Class Hybrid Power Generation System

  • Lee, Haseung;Kong, Changduk;Park, Hyunbum
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.167-174
    • /
    • 2016
  • Even though the differential drag type machines of the vertical wind turbines are a bit less efficient than the lift type machines such as Darrieus type machines, they have an advantage of low starting torque. The flapping blade type wind turbine is a specific type of the differential drag machines, and it has no need for orientation as well as quite low starting torque. This work is to develop an innovative 5kW class flapping type vertical wind turbine system which will be applicable to a hybrid power generation system driven by the diesel engine and the wind turbine. The parametric study was carried out to decide an optimum aerodynamic configuration of the wind turbine blade. In order to evaluate the designed blade, the subscale wind tunnel test and the performance test were carried out, and their test results were compared with the analysis results.

풍속에 따른 수평형과 수직형 풍력발전기의 출력특성에 관한 분석 (A analysis on the output characteristic of the horizontal and vertical wind turbine related to wind velocity)

  • 최장균;차인수
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.191-193
    • /
    • 2006
  • The various wind turbines have been designed and developed for the century. The precision design of the blade and turbine system considering the wind circumstance is required for the high efficiency. In this paper, we investigated the output characteristics of the horizontal and vertical wind turbine related to the wind velocity. Furthermore we will intend to design the wind turbine blade adapted the urban wind circumstance.

  • PDF

수직축 소형 풍력터빈 성능 향상을 위한 로터 형상 개선에 대한 연구 (A Study on the Improvement of the Rotor Shape for Improving Performance of Small Wind Turbine with Vertical Axis)

  • 김찬종;김재운;백인수;김철진
    • 산업기술연구
    • /
    • 제37권1호
    • /
    • pp.37-40
    • /
    • 2017
  • This study was carried out to improve the performance of a vertical-axis micro wind turbine. It is unique in that it has two identical generators on both sides of the main shaft. Also it has a C shape frame to fix the generators and the main shaft firmly and to provide a connection to a tower. Performance analysis of the wind turbine rotor was performed using Qblade, which is an analysis program for vertical axis wind turbines and freeware. Based on the analysis results, the blade airfoil, the chord length, and the rotor size were modified to improve the performance of the rotor. The modification was found to increase the performance of the wind turbine and to reach the targeted rated power.

안테나 결합형 수직 풍력터빈의 유체 구조 연성 해석 (Fluid-Structural Interaction Analysis of Vertical Wind Turbine Combined with Antenna)

  • 김성환;김익태
    • 공학기술논문지
    • /
    • 제11권4호
    • /
    • pp.237-243
    • /
    • 2018
  • The purpose of this study is to develop a vertical wind turbine with antenna structure in microgird environment. Computational fluid dynamics (CFD) was used to calculate the basic aerodynamic performance. The pressure resulted from CFD analysis has been mapped on the surface of wind turbine as load condition and the Fluid Structure Interaction (FSI) was applied. The stability of the wind turbine was confirmed by checking the deformation and internal stress of wind turbine by wind force.

고효율 소형 수직형 풍력터빈의 공력성능에 관한 실험적 연구 (An Experimental Study on the Aerodynamic Performance of High-efficient, Small-scale, Vertical-axis Wind Turbine)

  • 박준용;이명재;이승진;이승배
    • 대한기계학회논문집B
    • /
    • 제33권8호
    • /
    • pp.580-588
    • /
    • 2009
  • This paper summarizes the experimentally-measured performance of small-scale, vertical-axis wind turbine for the purpose of improving the aerodynamic efficiency and its controllability. The turbine is designed to have a Savonius-Type rotor with an inlet guide-vane and an side guide-vane so that it achieves a higher efficiency than any lift- or drag-based turbines. The main design factors for this high-efficient, vertical wind turbine are the number of blades (Z), and the aspect ratio of Height/Diameter (H/D) among many. The basic model has the diameter of 580mm, the height of 464mm, and the blade number of 10. The maximum power coefficient of 0.50 was experimentally measured for the above-mentioned specifications. The inlet-guide vane ensures the maximum efficiency when the angle of attack to the rotor blade lies between $15^{\circ}$ and $20^{\circ}$. This experimental results for the vertical-axis wind turbine can be applied to the preliminary design of turbine output curve based on the wind characteristics at the proposed site by controlling its aerodynamic performance given as a priori.

도로 중앙분리대용 후드장식형 수직축풍력발전기 연구 (A Study of Hood-Type Vertical Axis Wind Turbine Embedded to Highway Median Strip)

  • 이종조;임재규
    • 조명전기설비학회논문지
    • /
    • 제27권1호
    • /
    • pp.24-34
    • /
    • 2013
  • This paper introduces the study of hood-type wind turbine embedded on highway median strip. Recently, many studies are being made to apply to small wind turbine in city. This study is wind turbine producing electricity generated from the wind by running cars. In order to analyze wind generated by running cars, we measured experiments using running cars and buses. Also, using CFD and interpreter program, we analysis wind turbines performance and applied to the twist-sabonius blade. This wind turbine attached to safety lamp on the road is produced to use electricity generated through the wind tunnel experiment. In this paper results, this wind turbine system is expected to produce the power source installed the heat ray and safety lamps on the road.