• Title/Summary/Keyword: Vertical Plate

Search Result 773, Processing Time 0.042 seconds

Proposing the Slab Thickness that Satisfies the Vertical Floor Vibration Criteria for Several Sizes of Flat Plate Floor System (수직진동 사용성을 고려한 플렛플레이트 두께 제안)

  • 이민정;한상환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.600-603
    • /
    • 2003
  • The floor thickness in residential buildings may not satisfy the floor vibration criteria even though the thickness is determined by the serviceability requirements in current design provisons. Thus it is necessary to develop the procedure to determine slab thickness that satisfies the floor vibration criteria. In this study provide the methods to determine the slab thickness that satisfies the vertical floor vibration criteria for several sizes of flat plate floor system. Randomness inherent in young modulus of concrete and heel drop intensity was accounted. For this purpose Monte Carlo simulation procedure was adopted.

  • PDF

Structural response of rectangular composite columns under vertical and lateral loads

  • Sevim, Baris
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.287-298
    • /
    • 2017
  • The present study aims to determine the structural response of full scaled rectangular columns under both of vertical and lateral loads using numerical methods. In the study, the composite columns considering full concrete filled circular steel tube (FCFRST) and concrete filled double-skin rectangular steel tube (CFDSRST) section types are numerically modelled using ANSYS software. Vertical and lateral loads are applied to models to assess the structural response of the composite elements. Also similar investigations are done for reinforced concrete rectangular (RCR) columns to compare the results with those of composite elements. The analyses of the systems are statically performed for both linear and nonlinear materials. In linear static analyses, both of vertical and lateral loads are applied to models as only one step. However in nonlinear analyses, while vertical loads are applied to model as only one step, lateral loads are applied to systems as step by step. The displacement and stress changes in some critical nodes and sections and contour diagrams are reported by graphs and figures. At the end of the study, it is demonstrated that the nonlinear models reveal more accurate result then those of linear models. Also, it is highlighted that composite columns provide more and more safety, ductility compared to reinforced concrete column.

A Study on Changes in Appendage Design for Improvement of Dynamic Stability of Manta-type Unmanned Undersea Vehicle (Manta형 무인잠수정의 동안정성 향상을 위한 부가물의 설계 변경에 관한 연구)

  • Bae, Jun-Young;Sohn, Kyoung-Ho;Kwon, Hyeong-Ki;Lee, Seung-Keon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.323-331
    • /
    • 2007
  • Proposed Manta-type Unmanned Undersea Vehicle(UUV) turned out to have the tendency of dynamic instability in vertical plane, and moreover to have that of so strong dynamic stability in horizontal plane as to cause another problem in turning motion due to negative value of sway damping lever. The authors discussed the changes in appendage design for improvement of dynamic stability of UUV in vertical and horizontal planes. As a result, the dynamic stability in vertical plane was improved by increasing the area of horizontal stern planes. and the dynamic stability in horizontal plane was also improved by removal of lower vertical plate and by adjusting the area and position of upper vertical plate simultaneously.

Buckling Analysis of Curved Stiffened Web Plate using Eight and Nine-Node Flat Shell Element with Substitute Shear Strain Field (대체전단변형률 장을 갖는 8, 9절점 평면 쉘요소를 이용한 곡선 보강 복부판의 좌굴해석)

  • Ji, Hyo-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.455-464
    • /
    • 2011
  • In this study, the buckling analysis of the vertically curved stiffened web plate was conducted through finite-element analysis, using an eight- and nine-node flat shell element with a substitute shear strain field. To investigate the buckling behavior of the vertically curved web plate with a longitudinal or vertical stiffener under in-plane moment loading, parametric studies were conducted for the variation of the width (b) and ratio of the bending stiffness of the stiffener to that of the plate (${\gamma}=EI/bD$). The static behavior of the vertically curved web plate without a stiffener was also investigated, and then the buckling abilities of the longitudinal and vertical stiffeners were compared under moment loading.

Comparison of Shear Strength Equation for Flat Plates with GFRP Plate (GFRP 판으로 보강된 플랫 플레이트의 전단강도식에 관한 규준의 비교 분석)

  • Kim, Min Sook;Hwang, Seung Yeon;Kim, Heecheul;Lee, Young Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.247-254
    • /
    • 2014
  • In this study, shear test performed to investigate the shear behavior of flat plate that reinforced by embedded GFRP(glass fiber reinforced polymer) plate with openings. Shape of the GFRP shear reinforcement is a plate with several openings to ensure perfect integration with concrete. The test parameters include the distance between the column face and the first line of GFRP plate and number of GFRP plate vertical strip. The result of test showed that when number of GFRP plate vertical strip was increased, shear strength improved. The shear strength for flat plate reinforced GFRP plate in various codes including ACI 318, BS 8110, EUROCODE 2, and KCI were compared to provide more rational approach for reinforced concrete flat plates with GFRP plate.

A Development of Device for Measurement of Vertical Ground Reaction Force(II) (수직 반작용력 측정 장치 개발(II))

  • Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.341-354
    • /
    • 2003
  • The purpose of this study was to develop the uniaxial force plate system which is measured by the vertical force. The VGRF(vertical ground reaction force) 1.0 was composed of 2 bath digital scales, 2 indicaters, and analyzing software. This system was newly renovated to VGRF 2,0 which are 2 industrial digital scales, 2 adjustable indicators, and enforced analyzing software. Changes of the new system were as follows. First, the height of the plate was 75% lower than before. Second, sensing ability of the load cell was changed from 90 - 0.05kg to 300 - 0.1kg. Third, the speed of data processing was changed from 17 per second to 60 per second. Fourth, analyzing software was enforced to develop and calculate the data. For the test of the system, two different types(bare foot, high-heeled shoes) gait was adopted. highly skilled female walker(23yrs, height 165cm, body mass 46.8kg) participated for the experimental study. During the dynamic performance(gait analysis), the data of each load cell were very similar to the previous studies. Specifically, bare foot walking had less vertical force than high-heeled shoes. Consequently, VGRF 2.0 can sense the general dynamic movements as well as static load conditions.

Measurement and Analysis about Behavior of Steel Plate Girder in Vicinity of Support, According to Driving Condition (주행조건에 따른 판형교 지점부 거동 측정 분석)

  • Lee, Syeung-Youl;Kim, Nam-Hong;Woo, Byoung-Koo;Na, Kang-Woon
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.690-696
    • /
    • 2011
  • A number of conventional railway bridge is more than 2600. Non-ballast plate girder bridge is about 700 and this is 27% of all bridge numbers. Non-ballast plate girder has advantages that self load is more lighter than moving load and construction cost is more inexpensive than concrete bridge. But non-ballast plate girder has disadvantages that vibration and noise is bigger than concrete bridge. This study had analyzed behavior of non-ballast plate girder according to the arrangement of supports and driving conditions to review the proper arrangement of support. Measurements were performed in single line and disel locomotive of 7400type were used as test vehicle. The vehicle's driving conditions are as follows; Change of driving direction, Constant speed driving, Deceleration driving, Acceleration driving. Main measurement contents were horizontal displacement and vertical vibration acceleration in girder of vicinity support. Results of measurement are as follows; In case that a vehicle drives from fixed support to movable support, vertical vibration acceleration of the girder was smaller than opposition case.

  • PDF

Experimental Study on the Connection between RC Footing and Steel Pile according to Rail loads (철도하중을 고려한 기초구조물과 강관말뚝 연결부 거동에 관한 실험적 연구)

  • Kim, Jung-Sung;Kim, Dae-Sang;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1607-1614
    • /
    • 2011
  • As the connection between spread footing and pile is very important structural connection, it acts as the inter-loading medium to transfer the rail loads applied by superstructure to ground through the body pile of foundation. The experimental study is the method how to reinforce the pile cap between steel pile and footing utilizing perfobond plate with protruding keys. It were experimented on the compression punching tests and bending moment tests against the vertical loading and horizontal loadings acting on head of steel tube pipe. As a result, the tension capacity of the perfobond plate exhibited the superior performance due to the interlocking or dowel effects by the sheared keys of perfobond plate, and there were showing the sufficient strength and ductile capacity against the bending moment of horizontal loading tests. Therefore, it is judged that "the embedded method of perfobond plate in pile cap and footing" which is utilizing the shear connection of perfobond plate with protruding keys has a sufficient structural stability enough to be replaced with the current specification of reinforced method of pile cap with vertically deformed rebar against the vertical compression loads and bending moments that are able to occur in the combination structure of steel pile and the footing foundation.

  • PDF

Experimental Study on R-22 Condensation Heat Transfer Characteristic in Plate and Shell Heat Exchanger (Plate and Shell 열교환기 내의 R-22 응축열전달 특성에 관한 실험적 연구)

  • Seo, Mu-Gyo;Park, Jae-Hong;Kim, Yeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.860-867
    • /
    • 2001
  • In this study, condensation heat transfer experiments were conducted with plate and shell heat exchangers(P&SHE) using R-22. An experimental refrigerant loop has been established to measure the condensation heat transfer coefficient of R-22 in a vertical P&SHE. Two vertical counter flow channels were formed in the P&SHE by three plates of geometry with a corrugated trapezoid shape of a chevron angle of 45°. Downflow of the condensing R-22 in one channel releases heat to the cold upflow of water in the other channel. The effect of the refrigerant mass flux, average heat flux, system pressure and vapor quality of R-22 on the measured data were explored in detail. The results indicate that at a higher vapor quality the condensation heat transfer coefficients are significantly higher. A rise in the refrigerant mass flux causes an increase in the h(sub)r. Also, a rise in the average heat flux causes an increase in the h(sub)r. Finally, at a higher system pressure the h(sub)r is found to be slightly lower. Correlation is also provided for the measured heat transfer coefficients in terms of the Nusselt number.

Improvement in uplift capacity of horizontal circular anchor plate in undrained clay by granular column

  • Bhattacharya, Paramita;Roy, Anamitra
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.617-633
    • /
    • 2016
  • A numerical study has been conducted to examine the improvement achieved in the ultimate pullout capacity of horizontal circular anchor plates embedded in undrained clay, by constructing granular columns of varying diameter over the anchor plates. The analysis has been carried out by using lower bound theorem of limit analysis and finite elements in combination with linear programming. The improvement in uplifting capacity of anchor plate is expressed in terms of an efficiency factor (${\xi}$). The efficiency factor (${\xi}$) has been defined as the ratio of ultimate vertical pullout capacity of anchor plate having diameter D embedded in soft clay reinforced by granular column to the vertical pullout capacity of the anchor plate with same diameter D embedded in soft clay only. The variation of efficiency factor (${\xi}$) for different embedment ratios and different diameter of granular column has been studied considering a wide range of softness of clay and different value of soil internal friction angle (${\phi}$) of the granular material. It is observed that ${\xi}$ increases with an increase in diameter of the granular column ($D_t$) and increase in friction angle of granular material. Also, the effectiveness of the usage of granular column increases with decrease in cohesion of the clay.