• Title/Summary/Keyword: Verification test

Search Result 2,705, Processing Time 0.029 seconds

Performance verification and improvement of the frequency analysis unit for GIS Preventive & Diagnostic Monitoring System (GIS 예방진단시스템 주파수 분석장치 성능개선 및 검증)

  • Kim, Won-Gyu;Kim, Min-Soo;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.485-491
    • /
    • 2015
  • This paper shows the design improvement and test model of FAU (Frequency Analysis Unit) in PDD (Partial Discharge Diagnosis system) for 800kV GIS (Gas Insulated Switchgear). We found some problems during operation of previous FAU, such as the aging of fiber-optic converter that can cause communication error, the malfunction of signal analysis circuit etc. And then we solved those problems by design improvement and verified the performance through type test. To monitor partial discharge, the performance of UHF sensor is important but the performance of frequency analysis unit is also very important. So we solved communication error, the malfunction of signal analysis circuit and then increased the operation reliability of FAU by improving fiber-optic converter and signal analysis circuit. Accredited testing laboratory carried out the performance verification test according to performance test criteria and procedure of reliability test standards, IEC-60225, 61000 and 60068 etc. We confirmed the test results which correspond with the performance test criteria.

Systematic approach process for Integrated Validation & verification Plan (통합평가 계획수립을 위한 시스템적 접근 프로세스)

  • Kim, Jin-Hun;Sin, Gwang-Bok;Yu, Won-Hui;Gu, Dong-Hui
    • 시스템엔지니어링워크숍
    • /
    • s.1
    • /
    • pp.9-14
    • /
    • 2003
  • The paper aims at presenting a systematic approach process and a method of requirement validation and system verification. Validation is applied during concept development to ensure conceptual validity, requirements validity, and design validity. Verification work is applied subsequent to the design work on test articles and early production items to produce evidence that the design solutions do, in fact, satisfy th requirements. In this paper, we present a requirements validation model and a system verification model. This models are applied to the development of TTX(Tilting Train Express)system with systems engineering tool, CORE.

  • PDF

Utterance Verification using Phone-Level Log-Likelihood Ratio Patterns in Word Spotting Systems (핵심어 인식기에서 단어의 음소레벨 로그 우도 비율의 패턴을 이용한 발화검증 방법)

  • Kim, Chong-Hyon;Kwon, Suk-Bong;Kim, Hoi-Rin
    • Phonetics and Speech Sciences
    • /
    • v.1 no.1
    • /
    • pp.55-62
    • /
    • 2009
  • This paper proposes an improved method to verify a keyword segment that results from a word spotting system. First a baseline word spotting system is implemented. In order to improve performance of the word spotting systems, we use a two-pass structure which consists of a word spotting system and an utterance verification system. Using the basic likelihood ratio test (LRT) based utterance verification system to verify the keywords, there have been certain problems which lead to performance degradation. So, we propose a method which uses phone-level log-likelihood ratios (PLLR) patterns in computing confidence measures for each keyword. The proposed method generates weights according to the PLLR patterns and assigns different weights to each phone in the process of generating confidence measures for the keywords. This proposed method has shown to be more appropriate to word spotting systems and we can achieve improvement in final word spotting accuracy.

  • PDF

Dynamic Verification Methodology of User Code in AddSIM Environment (AddSIM 환경에서의 사용자 코드 동적 검증 방법론)

  • Yang, Jiyong;Choi, Changbeom
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.1
    • /
    • pp.41-47
    • /
    • 2019
  • Defense simulation is actively used to test various weapon systems and evaluate their effectiveness. The AddSIM environment is a simulation framework designed to support the weapon systems dealt with in defense simulation from an integrated point of view and is designed for reuse and scalability. Models used in AddSIM require base model structure fidelity and verification of user code area. Therefore, this paper describes the dynamic verification method used for completeness of models used in AddSIM. For the dynamic verification of user code, the specification method and the verification algorithm are described. Also, we introduce the prototype of the dynamic verifier implemented based on verification specification method and algorithm. The case study analyzes the verification results based on the simulation example implemented in AddSIM environment.

A Predictive Model of the Generator Output Based on the Learning of Performance Data in Power Plant (발전플랜트 성능데이터 학습에 의한 발전기 출력 추정 모델)

  • Yang, HacJin;Kim, Seong Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8753-8759
    • /
    • 2015
  • Establishment of analysis procedures and validated performance measurements for generator output is required to maintain stable management of generator output in turbine power generation cycle. We developed turbine expansion model and measurement validation model for the performance calculation of generator using turbine output based on ASME (American Society of Mechanical Engineers) PTC (Performance Test Code). We also developed verification model for uncertain measurement data related to the turbine and generator output. Although the model in previous researches was developed using artificial neural network and kernel regression, the verification model in this paper was based on algorithms through Support Vector Machine (SVM) model to overcome the problems of unmeasured data. The selection procedures of related variables and data window for verification learning was also developed. The model reveals suitability in the estimation procss as the learning error was in the range of about 1%. The learning model can provide validated estimations for corrective performance analysis of turbine cycle output using the predictions of measurement data loss.

Autonomous Mission Management Software Design and Verification Technique for Unmanned Aerial Vehicles (무인기 자율 임무관리 소프트웨어 설계 및 검증 기법)

  • Chang, Woohyuk;Lee, Seung-Gyu;Kim, Yun-Geun;Oh, Taegeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.505-513
    • /
    • 2021
  • We propose an autonomous mission management software design and verification technique for unmanned aerial vehicles to autonomously mitigate dynamic situation changes occurred in the inside and outside of an aircraft in compliance with the mitigation priority order. The proposed autonomous mission management software is designed in a modular architecture that consists of concurrently executing multiple threads. To verify it, we suggest three verification steps: 1) software integration by checking the expected request/response messages between the threads for all possible dynamic situation changes; 2) integration test to verify the software functionality; 3) performance test to verify the quantitative software performance. Especially, the software integration test environment is built and utilized to carry out the integration and performance tests.

The Structural Analysis and Experimental Verification for the Next Generation High Speed EMU (분산형 고속전철의 하중조건에 따른 정적 하중시험 평가)

  • Choi, Jeong-Yong;Jeong, Won-Wha;Park, Geun-Soo;Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.307-313
    • /
    • 2011
  • Hyundai Rotem Company has designed and manufactured the next generation high speed EMU bodyshell (M3-car). Korean Railway Safety Law specifies the loads vehicle bodies shall be capable of withstanding, identifies what material data shall be used and presents the principles to be used for design verification by analysis. Therefore, in order to fulfill the structural requirements, Hyundai Rotem Company has carried out Finite Element Analysis (FEA) and static load test to verify whether the carbody structure has enough strength to withstand the loads specified by Korean Railway Safety Law. This research contains the results obtained by the FE analysis and static load test. The FE analysis is carried out using NX I-DEAS 6.1 and specially designed test jigs and equipment are used for the load tests.

  • PDF

Analysis Study on 32nd OPCW Proficiency Test Sample with GC-TSQ CI (GC-TSQ CI 분석법을 이용한 제32차 OPCW 숙련도 시험 시료 분석 연구)

  • Kim, Hyunsuk;Jung, Changhee;Lee, Yonghan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.828-835
    • /
    • 2014
  • GC-TSQ CI technique was applied for analysis of samples for the $32^{nd}$ OPCW proficiency test. Eight chemical weapon convention(CWC) related chemicals were identified by product ion mode analysis with GC-TSQ in the samples. Choice of specific precursor ion made it possible to supply selective total ion chromatograms(TICs) of target molecule. GC-TSQ CI anaylsis technique was useful method for chemical warfare agent verification because analysis selectivity was improved by choice of mother molecule as precursor ion and gave mass spectra.

Verification and Validation of Dynamic Clearance in Digital Mockup Using Engine Movement Roll Data (엔진 거동을 고려한 DMU(Digital Mockup)에서의 다이나믹 간격 검증)

  • Kim, Yong-Suk;Jang, Dong-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.56-61
    • /
    • 2010
  • This paper presents dynamic clearance verification considering engine movement for vehicle engine room package and validates through physical vehicle test. Traditionally, static clearance guide has been used for engine room package, but it's only 2-dimension criteria that results in requiring unnecessary space and it's not possible to conduct engine movement with real driving conditions. Thus, the dynamic DMU considers engine movement based on 28 load cases that are Roll Data analyzed by CAE for maximum engine movement and visualizes part-to-part dynamic clearance into virtual space. The dynamic DMU enables to develop compact engine room package without unnecessary space. The result of comparison between simulation and physical test has 0.892 correlation coefficient.

Modeling of Beam Structures from Modal Parameters (모달 파라미터를 이용한 보 구조물의 모델링)

  • Hwang, Woo-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.519-522
    • /
    • 2006
  • Accurate modeling of a dynamic system from experimental data is the bases for the model updating or heath monitoring of the system. Modal analysis or modal test is a routine process to get the modal parameters of a dynamic system. The modal parameters include the natural frequencies, damping ratios and mode shapes. This paper presents a new method that can derive the equations of motion for a dynamic system from the modal parameters obtained by the modal analysis or modal test. The present method based on the relation between the eigenvalues and eigenvectors of the state space equation derives the mass, damping and stiffness matrices of the system. The modeling of a cantilevered beam from modal parameters is an example to prove the efficiency and accuracy of the present method. Using the lateral displacements only, not the rotations, gives limited information for the system. The numerical verification up to now gives reasonable results and the verification with the test data is scheduled.

  • PDF