• 제목/요약/키워드: Venturi Effect

검색결과 54건 처리시간 0.026초

Flow Instability of Cryogenic Fluid in the Downstream of Orifices

  • Thai, Quangnha;Lee, Chang-Jin
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.413-418
    • /
    • 2008
  • Flow instability in the rocket turbo pump system can be caused by various reasons such as valve, orifice and venturi, etc. The inception of cavitation, especially in the propellant feeding system, is the primary cause of the mass flow and pressure oscillation due to cyclic formation and depletion of cavitation. Meanwhile, the main propellant in liquid rocket engine is the cryogenic one, which is very sensitive to temperature variation, and the variation of propellant properties caused by thermodynamic effect should be accounted for in the flow analysis. The present study focuses on the formation of cryogenic cavitations by adopting IDM model suggested by Shyy and coworkers. Also, the flow instability was investigated in the downstream of orifice by using a developed numerical code. Calculation results show that cryogenic cavitations can lead to flow instability resulting in mass flow fluctuations due to pressure oscillations. And the prediction of cavitations in cryogenic fluid is of vital importance in designing feeding system of LRE.

  • PDF

고온 세라믹필터의 펄스젯 탈진 성능에 관한 연구 (A Study on the Performance of Pulse Jet Cleaning in High Temperature Filter)

  • 김병렬;박승철;박병철;조현준;오형모;황태원;신상운
    • 방사성폐기물학회지
    • /
    • 제3권1호
    • /
    • pp.9-16
    • /
    • 2005
  • To evaluate parameters influencing on the dust removal of the High Temperature Filter(HTF) system, a computer simulation of fluid dynamics inside the system had been performed. The results showed that the optimum pulse jet periods were 50ms and 90ms for the 1000mm and 1500mm long filter elements respectively. Dust removal effect was very excellent under the pulse jet pressure of 3 bar. But the distance between the pulse jet nozzle and the venturi of a filter element had no meaningful effect on the performance with the variation from 5mm to 10mm. Compared to the dispersion mode of pulse jet, the collective mode of pulse jet flow was preferable in maintaining the pressure inside the system stable.

  • PDF

절삭가공(切削加工)에 사용(使用)되는 절삭유(切削油)의 농도최적화(濃度最適化)에 관(關)한 연구(硏究) (A Study on Optimization of The Concentration of Cutting Oil to be used for Cutting)

  • 김규태;김원일
    • 한국산업융합학회 논문집
    • /
    • 제16권3호
    • /
    • pp.95-102
    • /
    • 2013
  • It is indispensable to modern society metal processing since the industrialized rapidly, but it is a metalworking cutting fluid immediately. In addition, this means selecting a emulsion on the basis of quality criteria processing method, the material of the material, cutting depth, cutting speed, Djourou fence Liang, and surface roughness, cutting oil, the shape of the device based on the emulsion, I will be the structure of the tank, filtration equipment also changes. In particular, acting bacteria is now breeding in response to the passage of time due to metal ion degradation due to heat generated hydraulic fluid leakage, humidity tung, during processing, seep from processing material at the time of processing the water-soluble cutting oil for generating the malodor by dropping significantly the performance of the cutting oil to corruption from, sometimes by introducing various additives to suppress spoilage in advance. In this study, we expect the effect of the cost reduction in the extension of fluid replacement cycle through the application of the management apparatus and deep understanding in the management of cutting fluid, the working environment through the understanding and interest of workers in the production site more than anything I try to become useful for the improvement.

지면효과익기 날개에 대한 전산 공력 해석 (Computational Aerodynamic Analysis of Airfoils for WIG(Wing-In-Ground-Effect) -Craft)

  • 조창열;김양준
    • 한국항공우주학회지
    • /
    • 제32권8호
    • /
    • pp.37-46
    • /
    • 2004
  • 지면효과의 여러 현상을 Navier-Stokes 방정식을 이용하여 해석하고 공기역학적인 관점에서 그 결과를 분석하였다. 2차원 지면효과에 대해서는 이미지 와류에 의한 약형 표면의 압력변화, 두께의 영향, 지면효과의 비점성 유동 현상 등을 확인하였으며, 3차원 지면효과로 익단와류 강도의 증가현상과 유효스팬 증가, 익단와류의 바깥 흐름현상 등을 확인하였다. 또한, 재래식 익형인 NACA 6409와 러시아의 WIG기 전용익형인 DHMTU 8-30에 대해서 Irodov의 조건식을 사용하여 새로 정안정성을 해석하였다. 해석결과, DHMTU 8-30 익형의 세로 정안정성이 NACA 6409 익형보다 훨씬 우수한 것으로 나타났다. 그러므로 DHMTU 8-30을 WIG기에 사용할 경우 NACA 6409에 비해 꼬리날개 부피비를 현저히 줄일 수 있음을 확인하였다.

다중회귀모형을 이용한 벤츄리가 없는 충격기류식 여과집진장치 압력손실 예측 (Pressure Drop Predictions Using Multiple Regression Model in Pulse Jet Type Bag Filter Without Venturi)

  • 서정민;박정호;조재환;진경호;정문섭;이병인;홍성철;시바쿠마르;최금찬
    • 한국환경과학회지
    • /
    • 제23권12호
    • /
    • pp.2045-2056
    • /
    • 2014
  • In this study, pressure drop was measured in the pulse jet bag filter without venturi on which 16 numbers of filter bags (Ø$140{\times}850{\ell}$) are installed according to operation condition(filtration velocity, inlet dust concentration, pulse pressure, and pulse interval) using coke dust from steel mill. The obtained 180 pressure drop test data were used to predict pressure drop with multiple regression model so that pressure drop data can be used for effective operation condition and as basic data for economical design. The prediction results showed that when filtration velocity was increased by 1%, pressure drop was increased by 2.2% which indicated that filtration velocity among operation condition was attributed on the pressure drop the most. Pressure was dropped by 1.53% when pulse pressure was increased by 1% which also confirmed that pulse pressure was the major factor affecting on the pressure drop next to filtration velocity. Meanwhile, pressure drops were found increased by 0.3% and 0.37%, respectively when inlet dust concentration and pulse interval were increased by 1% implying that the effects of inlet dust concentration and pulse interval were less as compared with those changes of filtration velocity and pulse pressure. Therefore, the larger effect on the pressure drop the pulse jet bag filter was found in the order of filtration velocity($V_f$), pulse pressure($P_p$), inlet dust concentration($C_i$), pulse interval($P_i$). Also, the prediction result of filtration velocity, inlet dust concentration, pulse pressure, and pulse interval which showed the largest effect on the pressure drop indicated that stable operation can be executed with filtration velocity less than 1.5 m/min and inlet dust concentration less than $4g/m^3$. However, it was regarded that pulse pressure and pulse interval need to be adjusted when inlet dust concentration is higher than $4g/m^3$. When filtration velocity and pulse pressure were examined, operation was possible regardless of changes in pulse pressure if filtration velocity was at 1.5 m/min. If filtration velocity was increased to 2 m/min. operation would be possible only when pulse pressure was set at higher than $5.8kgf/cm^2$. Also, the prediction result of pressure drop with filtration velocity and pulse interval showed that operation with pulse interval less than 50 sec. should be carried out under filtration velocity at 1.5 m/min. While, pulse interval should be set at lower than 11 sec. if filtration velocity was set at 2 m/min. Under the conditions of filtration velocity lower than 1 m/min and high pulse pressure higher than $7kgf/cm^2$, though pressure drop would be less, in this case, economic feasibility would be low due to increased in installation and operation cost since scale of dust collection equipment becomes larger and life of filtration bag becomes shortened due to high pulse pressure.

유량 제어장치인 가변스로틀밸브의 기하학적 형상변화에 따른 공기역학 특성분석 연구 (A numerical study on the aerodynamic characteristics of a variable geometry throttle valve(VGTV) system controlling air-flow rate)

  • 조현성;김철호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권4호
    • /
    • pp.378-383
    • /
    • 2013
  • 가솔린엔진의 출력제어를 위해 나비형(butterfly-type) 스로틀밸브가 응용되고 있다. 그러나 기존의 나비형 스로틀밸브는 밸브 후방에서 발생하는 강한 와류현상으로 인해 매우 큰 흡입 유로의 저항을 유발하게 된다. 이러한 유로저항은 엔진의 체적효율(volumetric efficiency)을 떨어뜨려 궁극적으로 엔진의 출력과 효율에 부정적인 영향을 미치게 된다. 본 연구에서는 CFD수치해석 기법을 이용하여 기존 나비형 스로틀밸브의 문제점 개선을 위해 제안한 벤투리형(venturi-type) 가변스로틀밸브(VGTV)의 공기역학적 작동특성에 관해 알아보았으며, 본 장치의 유량과 저항계수($K_L$)의 변화특성 분석을 통해 가솔린엔진의 체적효율 개선효과를 평가하는데 연구의 목적을 두고 있다. 본 연구를 통해 기존의 나비형 스로틀밸브에 비해 새롭게 제안된 벤투리형 가변스로틀밸브의 유로저항이 평균 49.0%정도 개선된다는 사실을 알 수 있었으며, 이는 엔진의 체적효율과 출력에 매우 큰 영향을 줄 것으로 기대된다.

극저온 유체의 공동 발생에 의한 오리피스 후류의 유동 불안정 (Flow instability of cryogenic fluid in the downstream of orifice)

  • 이세영;이창진
    • 한국항공우주학회지
    • /
    • 제36권7호
    • /
    • pp.695-702
    • /
    • 2008
  • 액체 로켓 엔진의 연료 공급 시스템은 다양한 원인으로 인해 유동 불안정이 발생한다. 특히 연료 공급 시스템에서 발생하는 공동 현상은 공동의 생성과 소멸로 인해 후류 쪽의 압력 및 유량의 진동을 유발하게 된다. 액체 로켓은 주 추진제로 극저온 유체를 사용하게 되는데, 극저온 유체는 온도에 민감한 성질을 갖고 있기 때문에 공동 현상의 해석에 있어 온도 변화에 대한 효과를 반드시 고려해주어야 한다. 본 연구에서는 Shyy등이 제안한 “MUSHY IDM"모델을 이용하여 극저온 유체에서 발생하는 공동 현상을 모사하였다. 이를 바탕으로 오리피스에서 발생하는 공동 현상이 유동 불안정에 어떠한 영향을 미치는 지와 오리피스 형상 변화가 후류 유동의 불안정에 끼치는 영향을 연구하였다.

U자형 배관 내 결빙에 대한 해석적 연구 (Numerical Analysis of Freezing Phenomena of Water in a U-Type Tube)

  • 박용석;서정세
    • 한국기계가공학회지
    • /
    • 제18권12호
    • /
    • pp.52-58
    • /
    • 2019
  • This study numerically analyzed the icing process in a U-shaped pipe exposed to the outside by considering the mushy zone of freezing water. Numerical results showed that the flow was pulled outward due to the U-shaped bend in the freezing section exposed to the outside, which resulted in the ice wave formation on the wall of the bended pipe behind. At the same time, the formation of a corrugated ice layer became apparent due to the venturi effect caused by the ice. The factors affecting the freezing were investigated, including the change of the pipe wall temperature, the water inflow velocity, and the pipe bend spacing. It was found that, as a whole, the thickness of the freezing layer increased as the pipe wall temperature decreased. It was also found that the freezing layer became relatively thin when the inflow rate of water was increased, and that the spacing of the pipe bends did not significantly impact the change in the freezing layer.

건물 사이에 풍력발전기를 설치하기 위한 기류특성분석 (Analysis of Air Current Characteristics for Installing Wind Turbines Between Buildings)

  • 박민우;유장열;손영무;유기표
    • 한국공간구조학회논문집
    • /
    • 제18권1호
    • /
    • pp.117-125
    • /
    • 2018
  • Recently, various building integrated wind power (BIWP) approaches have been used to produce energy by installing wind power generators in high-rise buildings constructed in urban areas. BIWP has advantages in that it does not require support to position the turbine up to the installation height, and the energy produced by the wind turbine can be applied directly to the building. The accurate evaluation of wind speed is important in urban wind power generation. In this study, a wind tunnel test and computational fluid dynamics (CFD) analysis were conducted to evaluate the wind speed for installing wind turbines between buildings. The analysis results showed that the longer the length of the buildings, which had the same height, the larger the wind speed between the two buildings. Furthermore, the narrower the building's width, the higher the wind velocity; these outcomes are due to the increase in the Venturi effect. In addition, the correlation coefficient between the results of the wind tunnel test and the CFD analysis was higher than 0.8, which is a very high value.

L자형 배관내 물의 결빙에 관한 해석적 연구 (Numerical Analysis on the Freezing Process of Internal Water Flow in a L-Shape Pipe)

  • 이충호;서정세
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.144-150
    • /
    • 2018
  • In this study, the freezing process of L-shaped pipe exposed to the outside was investigated numerically by considering the mushy zone of freezing water. From the numerical results, it was found that the flow was outwardly directed due to the influence of the L-shaped bending part in the outside exposed part of the pipe, and the ice was formed in the shape of longitudinal corrugation on the wall surface of the pipe after the bending part. It is confirmed that this phenomenon is caused by the venturi effect due to the freezing as seen in connection with the velocity distribution in the pipe. It is found that the remelting phenomenon at the end of the freezing section occur simultaneously during the process of forming the ice in the pipe section. In regard of the factors affecting freezing, it was found that the thickness of the freezing layer is increased as the exposed pipe surface temperature is decreased, and the pipe surface temperature had a significant effect on the change of the freezing layer thickness. At the same time, it was found that the freezing layer becomes relatively thin when the water inflow rate is increased. This phenomenon was caused by reducing the exposure time of freezing water due to the vigorous flow convection of the water fluid.