• Title/Summary/Keyword: Ventilation velocity

Search Result 291, Processing Time 0.021 seconds

A numerical study of the effects of the ventilation velocity on the thermal characteristics in underground utility tunnel (지하공동구 터널내 풍속 변화에 따른 열특성에 관한 수치 해석적 연구)

  • Yoo, Ji-Oh;Kim, Jin-Su;Ra, Kwang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.29-39
    • /
    • 2017
  • In this research, thermal design data such as heat transfer coefficient on the wall surface required for ventilation system design which is to prevent the temperature rise in the underground utility tunnel that three sides are adjoined with the ground was investigated in numerical analalysis. The numerical model has been devised including the tunnel lining of the underground utility tunnel in order to take account for the heat transfer in the tunnel walls. The air temperature in the tunnel, wall temperature, and the heating value through the wall based on heating value(117~468 kW/km) of the power cable installed in the tunnel and the wind speed in the tunnel(0.5~4.0 m/s) were calculated by CFD simulation. In addition, the wall heat transfer coefficient was computed from the results analysis, and the limit distance used to keep the air temperature in the tunnel stable was examined through the research. The convective heat transfer coefficient at the wall surface shows unstable pattern at the inlet area. However, it converges to a constant value beyond approximately 100 meter. The tunnel wall heat transfer coefficient is $3.1{\sim}9.16W/m^2^{\circ}C$ depending on the wind speed, and following is the dimensionless number:$Nu=1.081Re^{0.4927}({\mu}/{\mu}_w)^{0.14}$. This study has suggested the prediction model of temperature in the tunnel based on the thermal resistance analysis technique, and it is appraised that deviation can be used in the range of 3% estimation.

The Numerical Study on the Ventilation of Non-isothermal Concentrated Fume (수치해석적 방법을 이용한 비등온 고농도 연무의 배기량 산정에 관한 연구)

  • Lim, Seok-Chai;Chang, Hyuk-Sang;Ha, Ji-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.534-543
    • /
    • 2008
  • The experimental study with the prototype provides more acceptable data than the others. But there are so many limited conditions to perform the experimental study with the prototype. So the theoretical similitude with the scaled model and the numerical study with the CFD method have been chosen alternatively to analysis the fume movement. In this study, the ventilation was estimated from the results of the numerical study based on the experimental results as the boundary conditions. The grid A and B were same size and shape with the models which was used in the experimental study and consisted with 163,839, 122,965 cells respectively. The height of the fume layer was estimated form the mole fraction of fume components and the ventilation was determined by the velocity and temperature of the fume. The results of this study showed that the fume movements estimated from the numerical study are enough to apply to the prototype if there are proper heat loss correction factors. The numerical study is easier to change study conditions and faster to get results from the study than the experimental study. So if we find some proper heat loss correction factors, it's possible to execute the various and advanced study with the numerical study.

Characteristics of domestic coals and efficient control of coal dust (국내 석탄광 분진의 특성과 효율적 제어)

  • Kim, Soo Hong;Kwon, Jun Wook;Kim, Sun Myung;Kim, Yun kwang;Jang, Yun Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.589-609
    • /
    • 2017
  • This study carried out the density and energy dispersive X-ray spectroscopy and particle size analysis which are the physical characteristics of coal dust by collecting samples of coal dust in the five domestic mines to control the coal dust through ventilation in the workplace for coal mining in the country. This will contribute to a more comfortable working environment by understanding the physical characteristics of the coal dust which is derived from any hard coal produced domestically. In particular, the result of PSA analysis showed that the size of coal dust sample for this study ranged from $0.007{\sim}88.614{\mu}m$ were the particles less than $3.5{\mu}m$, the size range responsible for pneumoconiosis. To observe the flow of coal dust collected on the wind speed, the fallout of coal dust produced by the wind tunnel for the wind was measured and the particle size analysis of coal dust fallout was carried out. In addition, airborne dust is measured according to the mine velocity by using a multi-stage Anderson sampler in the mine where fine dust is generated in a large amount and the wind speed is found out to control the coal dust below $3.5{\mu}m$. In addition, natural ventilation pressure of A mine was calculated to prevent over design of the main fan.

Assessment for Inhalation Exposure to Trihalomethanes (THMs) and Chroline and Efficiency of Ventilation for an Indoor Swimming Pool (일개 실내수영장의 공기 중 염소 및 트리할로메탄의 노출평가 및 환기 효율 평가)

  • Park, Hae-Dong;Park, Hyun-Hee;Shin, Jung-Ah;Kim, Tae-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.5
    • /
    • pp.402-410
    • /
    • 2010
  • The objectives of this study were to evaluate the air quality surrounding an indoor swimming pool, to estimate the cancer risk based on the airborne exposure to trihalomethanes (THMs), and to examine the ventilation efficiency by Computational Fluid Dynamics (CFD). Chlorine and THMs were measured poolside, and in the staff room and reception area. The indoor swimming pool was modeled using the Airpak program, with ventilation drawings and actual survey data. Temperature, flow and mean age of the air were analyzed. Levels of chlorine poolside, and in the staff room, and reception area were $203\;{\mu}g/m^3$, $5\;{\mu}g/m^3$, and $10\;{\mu}g/m^3$, respectively. Chloroform was the dominant THM in all sampling sites and mean concentrations were $16.30\;{\mu}g/m^3$, $0.51\;{\mu}g/m^3$, and $0.06\;{\mu}g/m^3$ poolside, in the staff room and reception area, respectively. Bromodichloromethane and Dibromochloromethane levels were respectively estimated as $10.3\;{\mu}g/m^3$ and $1.7\;{\mu}g/m^3$ poolside, $1.3\;{\mu}g/m^3$ and $0.1\;{\mu}g/m^3$ in the staff room, and were not detected in the reception area. The cancer risks from inhalation exposure to THMs were estimated between $3.37{\times}10^{-7}$ and $1.84{\times}10^{-5}$. A short circulation phenomenon was observed from the supply air vents to the exhaust air vents located in the ceiling. A high temperature layer was formed within one meter of the ceiling, and a low temperature layer was formed under this layer due to the low velocity and high temperature of the supply air, and the improper locations of the supply air vents and exhaust air vents. The stagnation was evident at the above adult pool and the mean age of the air was 22 minutes. Disinfection by-products in the indoor swimming pool were present in higher concentrations than in the outdoor air. In order to increase the removal of pollutants, adjustment was required of the supply air volume and the supply/exhaust position.

Vortex Features in a Half-ducted Axial Fan with Large Bellmouth (Effect of Tip Clearance)

  • Shiomi, Norimasa;Kinoue, Yoichi;Setoguchi, Toshiaki;Kaneko, Kenji
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.307-316
    • /
    • 2011
  • In order to clarify the features of tip leakage vortex near blade tip region in a half-ducted axial fan with large bellmouth, the experimental investigation was carried out using a 2-dimensional LDV system. Three sizes of tip clearance (TC) were tested: those sizes were 1mm (0.55% of blade chord length at blade tip), 2mm (1.11% of blade chord length at blade tip) and 4mm (2.22% of blade chord length at blade tip), and those were shown as TC=1mm, TC=2mm and TC=4mm, respectively. Fan characteristic tests and the velocity field measurements were done for each TC. Pressure - flow-rate characteristics and two-dimensional velocity vector maps were shown. The vortex trace and the vortex intensity distribution were also illustrated. As a result, a large difference on the pressure - flow-rate characteristics did not exist for three tip clearance sizes. In case of TC=4mm, the tip leakage vortex was outflow to downstream of rotor was not confirmed at the small and reference flow-rate conditions. Only at the large flow-rate condition, its outflow to downstream of rotor existed. In case of TC=2mm, overall vortex behaviors were almost the same ones in case of TC=4mm. However, the vortex trace inclined toward more tangential direction. In case of TC=1mm, the clear vortex was not observed for all flow-rate conditions.

The Influence of Wearing Army Combat Uniform on the Thermal Responses in Heat Environment (서열환경하에서의 전투복착용이 체온조절에 미치는 영향)

  • Kim, Tae Gyou;Cho, Ho Hyun
    • Fashion & Textile Research Journal
    • /
    • v.16 no.1
    • /
    • pp.167-174
    • /
    • 2014
  • The physical properties of textile materials and thermal physiological responses of the human subjects were evaluated with 4 different types of the army combat uniforms including US, German, Korean and general uniforms for this study. 8 male adults were used as the human subjects and the tests were done in the environmental chamber that was $25{\pm}0.1^{\circ}C$ of temperature, $65{\pm}5%$ of relative humidity and below 0.3 m/sec of air velocity. The test protocol consisted the rest period for 20 min., the exercise period for 20 min., the rest period for 20 min., the exercise period under wind condition for 20 min., and the recovery period for 20 min. The human subjects walked with 4.5 km/hr for 10 min., ran 7.5 km/hr for 10 min. during the first exercise period and walked and ran with the same speeds under 3.5 m/sec of the air velocity that simulated outdoor condition during the second exercise period. The test results of the study were as follows; The wind condition affected the skin and microclimate temperature of the human subjects lower compared to without wind condition, but had insignificant effect on the humidity control. The low air permeability of Korean uniform caused blocking the elimination of the humidity from the body and the regulation of body temperature. However, Korean uniforms could be the excellent one with the designs considering the ventilation of the uniforms and the textile fabrics with better air permeability.

Design of Fire Source for Railway Vehicles and Measurement of Critical Velocity in Reduced-Scale Tunnels (축소터널 철도차량 화원 설계 및 임계속도 측정연구)

  • Park, Won-Hee;Hwang, Sun-Woo;Kim, Chang-Yong
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.59-68
    • /
    • 2020
  • In this study, the authors designed a reduced-scale railway vehicle fire, which was necessary for evaluating the fire safety of railway tunnels using a reduced model. To overcome the shortcomings of the methods used in conventional reduced-scale railway tunnel tests, the authors simulated the fire source of a railway vehicle using a methanol fire source for fire buoyancy, and a smoke cartridge for smoke visualization. Therefore, the heat release mass consumption rates of various methane trays were measured using a cone calorimeter (ISO 5660). The critical ventilation velocity in the railway tunnels was obtained using the designed fire source of the railway vehicle, which was evaluated by the measured temperature at the top of the tunnel as well as laser visualization.

Respiratory Air Flow Transducer Applicable to Cardiopulmonary Resuscitation Procedure (인공심폐소생술에 활용 가능한 호흡기류센서)

  • Kim, Kyung-Ah;Lee, In-Kwang;Lee, You-Mi;Yu, Hee;Kim, Young-Il;Han, Sang-Hyun;Cha, Eun-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.833-839
    • /
    • 2013
  • Cardiopulmonary resuscitation (CPR) is performed by thoracic compression and artificial ventilation for the patient under emergent situation to maintain at least the minimum level of respiration and blood circulation for life survival. Good quality CPR requires monitoring respiration, however, traditional respiratory air flow transducers cannot be used because the transducer elements are facing the whole area perpendicular to the flow axis. The present study developed a new air flow transducer conveniently applicable to CPR. Specially designed "sensing rod" samples the air velocity at 3 different locations of the flow cross-section, then transforms into average dynamic pressure by the Bernoulli's law. The symmetric structure of the sensing holes of the sensing rod enables bi-directional measurement simply by taking the difference in pressure by a commercial differential pressure transducer. Both inspiratory and expiratory flows were obtained with symmetric measurement characteristics. Quadratic curve fitting provided excellent calibration formula with a correlation coefficient>0.999 (P<0.0001) and the mean relative error<1%. The present results can be usefully applied to accurately monitor the air flow rate during CPR.

A Study on Three-Dimensional Flow Analysis and Noise Source of Sirocco Fan (시로코 팬의 3차원 유동해석 및 소음원에 관한 연구)

  • Kang, Jeong-Seok;Kim, Jin-Taek;Lee, Cheol-Hyung;Baek, Byung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.896-902
    • /
    • 2018
  • This study examined the flow and noise inside a sirocco fan for ventilation as a commercial program. To confirm only the location and power of the noise source, flow analysis was performed with steady state flow analysis. Through flow analysis, the flow was observed in the sirocco fan and the velocity vector. The pressure distribution inside was observed with contours. From the results of steady analysis, the position and size of the noise source could be seen using the 'Curle surface acoustic power' and 'Proudman acoustic power'. The Curle surface acoustic power can be used to observe the noise from the surface. The Proudman acoustic power can be used to detect noise generated in the flow region because the position and size of the noise source generated inside the sirocco fan can be seen only in the steady state. Therefore it is necessary to further analyze the unsteady state to check the frequency of the noise generated. This study provides basic data for improving the performance of the Sirocco fan and reducing the noise.

Experimental study on vehicle-induced unsteady flow in tunnel (터널에서 차량의 운행에 의해 생성되는 비정상 유동에 대한 실험적 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.411-417
    • /
    • 2009
  • The thermo-flow field in road tunnel is influenced by some facts such as piston effect of vehicle's move, operation of ventilation facilities, natural wind and buoyancy effect of fire plume. Among those, piston effect is one of primary causes for formation of air flow in road tunnel and has an effect on initial direction of smoke flow in tunnel fire. In this study to analyze the unsteady flow in the tunnel caused by the run of vehicle, the experimental study of vehicle-induced unsteady flow on a reduced-scale model tunnel is presented. While the three types of vehicle shape such as basic type of rectangular shape, diamond-head type and stair-tail type are changed, the pressure and air velocity variations with time are measured. The rising ratio of pressure and velocity are in order of "basic type of rectangular shape > stair-tail type > diamond-head type". The experimental results would be good data for development of a numerical method on the vehicle-induced unsteady tunnel flow.