DOI QR코드

DOI QR Code

A numerical study of the effects of the ventilation velocity on the thermal characteristics in underground utility tunnel

지하공동구 터널내 풍속 변화에 따른 열특성에 관한 수치 해석적 연구

  • Yoo, Ji-Oh (Dep. of Automotive Engineering, Shin-Han University) ;
  • Kim, Jin-Su (Fire Disaster Prevention Research Center, Incheon National University) ;
  • Ra, Kwang-Hoon (EUM Enginerring)
  • Received : 2017.01.09
  • Accepted : 2017.01.19
  • Published : 2017.01.31

Abstract

In this research, thermal design data such as heat transfer coefficient on the wall surface required for ventilation system design which is to prevent the temperature rise in the underground utility tunnel that three sides are adjoined with the ground was investigated in numerical analalysis. The numerical model has been devised including the tunnel lining of the underground utility tunnel in order to take account for the heat transfer in the tunnel walls. The air temperature in the tunnel, wall temperature, and the heating value through the wall based on heating value(117~468 kW/km) of the power cable installed in the tunnel and the wind speed in the tunnel(0.5~4.0 m/s) were calculated by CFD simulation. In addition, the wall heat transfer coefficient was computed from the results analysis, and the limit distance used to keep the air temperature in the tunnel stable was examined through the research. The convective heat transfer coefficient at the wall surface shows unstable pattern at the inlet area. However, it converges to a constant value beyond approximately 100 meter. The tunnel wall heat transfer coefficient is $3.1{\sim}9.16W/m^2^{\circ}C$ depending on the wind speed, and following is the dimensionless number:$Nu=1.081Re^{0.4927}({\mu}/{\mu}_w)^{0.14}$. This study has suggested the prediction model of temperature in the tunnel based on the thermal resistance analysis technique, and it is appraised that deviation can be used in the range of 3% estimation.

본 연구에서는 3면이 지중과 접하는 형태의 전력구에서 온도상승을 방지하기 위한 환기시스템 설계에 필요한 벽면에서 열전달계수 등 열설계 자료를 수치해석적인 방법으로 검토하였다. 수치해석 모델은 터널 벽체에서의 열전달을 고려하기 위해서 전력구의 터널의 라이닝을 포함하는 것으로 모델링하였으며, 전력구에 설치되는 전력케이블의 발열량(117~468 kW/km), 전력구내 풍속(0.5~4.0 m/s)에 따른 터널내 공기온도 및 벽체온도, 벽체를 통한 발열량을 CFD시뮬레이션에 의해서 구하였다. 또한 해석결과로부터 벽체열전달계수를 계산하고 환기구간의 터널내 공기온도를 유지하기 위한 한계거리를 검토하였다. 벽체표면에서 대류열전달계수는 입구영역에서는 불안정한 변화를 보이나 약 100 m정도의 이후에는 일정한 값에 수렴한다. 터널벽체열전달계수는 풍속에 따라 $3.1{\sim}9.16W/m^2^{\circ}C$정도이며, 이를 무차원식으로 표현하면 $Nu=1.081Re^{0.4927}({\mu}/{\mu}_w)^{0.14}$이 된다. 열저항 해석기법에 의해서 터널내 온도 예측방법을 제시하였으며, 약 3%이내의 편차로 예측이 가능한 것으로 평가되었다.

Keywords

References

  1. Cha, B.K. (2003), "A Study on Water Cooling System for 345 kV, 154 kV Cable Underground Tunnel", The Korean Society of Mechanical Engineers autumn annual conference, pp. 131-155.
  2. Bae, J.-H., Min, B.-W., Kim, T.-Y., Kim, J.-S., Suk, K.-H., Shon, H.-S. (2011) "Cooling System for the Increase of Underground Power Cable Capacity in Tunnel", The Transactions of the Korean Institute of electrical engineers summer annual conference, pp. 574-575.
  3. Ministry of Land, Infrastructure and Transport (2010), "Utility Pipe Tunnel Design Criteria (KDS 27 60 00-4.1.4)", South Korea.
  4. Ministry of Land, Infrastructure and Transport (2010), "Utility Pipe Tunnel Design Criteria (KDS 27 60 00-4.3.5)", South Korea.
  5. Ministry of Land (2015), "Energy Saving Design Standard of Building", South Korea.
  6. Yu, S.-H., Yang, H.-K., Oh, C.-H. (2004), "High Voltage Underground Cable Cooling System", KEPCO.
  7. Seoul Metropolitan Government Office of Subway Construction (2005), "Urban Railway Technical (Tunnel)", South Korea.