• Title/Summary/Keyword: Ventilation Performance

Search Result 621, Processing Time 0.027 seconds

Greenhouse Cooling Using Air Duct and Integrated Fan and Pad System (일체형 팬 앤 패드 시스템과 에어 덕트를 이용한 온실 냉방)

  • Nam, Sang-Woon;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.176-181
    • /
    • 2011
  • The fan and pad evaporative cooling system is one of the main cooling methods in greenhouses. Its efficiency is very high, but it has some disadvantages as temperature gradient in greenhouse is large. This study was conducted to reduce the internal temperature gradients in the fan and pad cooling greenhouses. Experiments on cooling performance were carried out in a greenhouse equipped with air duct and integrated fan and pad system as an idea of this study. It showed that the cooling efficiency of an integrated fan and pad system was 75.7% in the first stage and 88.6% in the second stage. When this cooling system was operated for an unshaded and a shaded greenhouse, there were cooling effects of $5.7\sim7.6^{\circ}C$ and $7.4\sim9.7^{\circ}C$ to the control greenhouse, respectively. Maximum temperature differences in a cooling greenhouse, with a length of 18m, were $1.6\sim1.7^{\circ}C$ for shaded conditions and $2.3\sim2.7^{\circ}C$ for unshaded conditions. This greenhouse cooling method, with air duct and integrated fan and pad system, can reduce about 40~50% of the internal temperature gradients in the usual fan and pad cooling greenhouses.

Removal Performance of Sticky Paint Aerosol Control System Generated from Small Scale Car Paint Overspray Booth (소형 자동차 페인트 도장부스에서 발생하는 점착성 paint aerosol 처리장치에서 제거성능)

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Sohn, Jong-Ryeul;Park, Young-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.54-62
    • /
    • 2015
  • Small scale paint overspray booths are being operated nationwidely, for repair of passenger car body parts. paint aerosols are emitted from the paint overspray booth in operations. In paint overspray booth operations without ventilation system and air pollutants collection unit, it may land on nearby equipment. In this study a removal of sticky paint aerosol for application of the small-scale overspray paint booth. it's cause the surface of filter bag from generated sticky paint aerosol. To remove adhesion of paint aerosol the agglomerating agents are injected and mixed with sticky paint aerosols prior to reach the filter bag. The paint spray rate was set as $10{\pm}5g/min$ from air-atomized spray guns in the spray booth, injection rate of agglomerating was $10{\pm}5g/min$ in the mixing chamber. The filtration velocity including air pollutants varied from 0.2 m/min to 0.4 m/min. Bag cleaning air pressure was set as $5.0kg_f/min$ for detaching dust cake from surface of filter bag. Bag cleaning interval at the filtration velocity of 0.2 m/min was around 3 times longer than that of the 0.4 m/min. The residual pressure drop maintained highest value at the highest filtration velocity. Fractional efficiency of 99.952%~99.971% was possible to maintain for the particle size of 2.5 microns. Total collection efficiency at the filtration velocity of 0.2 m/min was 99.42%. During this study we could confirm high collection efficiency and long cleaning intervals for the test with filtration velocity of 0.2 m/min indicating an optimal value for the given dimensions of the test unit and test operating conditions.

Estimation on Heating and Cooling Loads for a Multi-Span Greenhouse and Performance Analysis of PV System using Building Energy Simulation (BES를 이용한 연동형 온실의 냉·난방 부하 산정 및 PV 시스템 발전 성능 분석)

  • Lee, Minhyung;Lee, In-Bok;Ha, Tae-Hwan;Kim, Rack-Woo;Yeo, Uk-Hyeon;Lee, Sang-Yeon;Park, Gwanyong;Kim, Jun-Gyu
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.258-267
    • /
    • 2017
  • The price competitiveness of photovoltaic system (PV system) has risen recently due to the growth of industries, however, it is rarely applied to the greenhouse compared to other renewable energy. In order to evaluate the application of PV system in the greenhouse, power generation and optimal installation area of PV panels should be analyzed. For this purpose, the prediction of the heating and cooling loads of the greenhouse is necessary at first. Therefore, periodic and maximum energy loads of a multi-span greenhouse were estimated using Building Energy Simulation(BES) and optimal installation area of PV panels was derived in this study. 5 parameter equivalent circuit model was applied to analyzed power generation of PV system under different installation angle and the optimal installation condition of the PV system was derived. As a result of the energy simulation, the average cooling load and heating load of the greenhouse were 627,516MJ and 1,652,050MJ respectively when the ventilation rate was $60AE{\cdot}hr^{-1}$. The highest electric power production of the PV system was generated when the installation angle was set to $30^{\circ}$. Also, adjustable PV system produced about 6% more electric power than the fixed PV system. Optimal installation area of the PV panels was derived with consideration of the estimated energy loads. As a result, optimal installation area of PV panels for fixed PV system and adjustable PV system were $521m^2$ and $494m^2$ respectively.

Semi-active storey isolation system employing MRE isolator with parameter identification based on NSGA-II with DCD

  • Gu, Xiaoyu;Yu, Yang;Li, Jianchun;Li, Yancheng;Alamdari, Mehrisadat Makki
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1101-1121
    • /
    • 2016
  • Base isolation, one of the popular seismic protection approaches proven to be effective in practical applications, has been widely applied worldwide during the past few decades. As the techniques mature, it has been recognised that, the biggest issue faced in base isolation technique is the challenge of great base displacement demand, which leads to the potential of overturning of the structure, instability and permanent damage of the isolators. Meanwhile, drain, ventilation and regular maintenance at the base isolation level are quite difficult and rather time- and fund- consuming, especially in the highly populated areas. To address these challenges, a number of efforts have been dedicated to propose new isolation systems, including segmental building, additional storey isolation (ASI) and mid-storey isolation system, etc. However, such techniques have their own flaws, among which whipping effect is the most obvious one. Moreover, due to their inherent passive nature, all these techniques, including traditional base isolation system, show incapability to cope with the unpredictable and diverse nature of earthquakes. The solution for the aforementioned challenge is to develop an innovative vibration isolation system to realise variable structural stiffness to maximise the adaptability and controllability of the system. Recently, advances on the development of an adaptive magneto-rheological elastomer (MRE) vibration isolator has enlightened the development of adaptive base isolation systems due to its ability to alter stiffness by changing applied electrical current. In this study, an innovative semi-active storey isolation system inserting such novel MRE isolators between each floor is proposed. The stiffness of each level in the proposed isolation system can thus be changed according to characteristics of the MRE isolators. Non-dominated sorting genetic algorithm type II (NSGA-II) with dynamic crowding distance (DCD) is utilised for the optimisation of the parameters at isolation level in the system. Extensive comparative simulation studies have been conducted using 5-storey benchmark model to evaluate the performance of the proposed isolation system under different earthquake excitations. Simulation results compare the seismic responses of bare building, building with passive controlled MRE base isolation system, building with passive-controlled MRE storey isolation system and building with optimised storey isolation system.

Recent research trends of post-harvest technology for king oyster mushroom (Pleurotus eryngii) (큰느타리버섯 수확후 관리기술 최근 연구 동향)

  • Choi, Ji-Weon;Yoon, YoeJin;Lee, Ji-Hyun;Kim, Chang-Kug;Hong, Yoon-Pyo;Shin, Il Sheob
    • Journal of Mushroom
    • /
    • v.16 no.3
    • /
    • pp.131-139
    • /
    • 2018
  • The king oyster mushroom (Pleurotus eryngii) is widely consumed because of its flavor, texture, and its functional properties such as antioxidant activity and prebiotic effects. However, long-term product storage and transportation (e.g., export) are difficult because of its limited durability. The shelf-life of king oyster mushroom is affected by environmental factors such as temperature, humidity, gas composition, and ventilation, which may affect sensory characteristics including respiration rate, texture, moisture, flavor, color, and pH. The major problems regarding storage of mushrooms are browning, flavor changes, and softening. To address these problems, novel preservation techniques were developed, and more durable variants were bred. Different drying methods, gamma irradiation, chitosan coating, modified atmosphere (MA) packaging, and controlled atmosphere (CA) storage were evaluated in order to extend the shelf-life of king oyster mushrooms. Freeze drying showed better results for the preservation of mushrooms than other drying methods. Irradiation with 1 kGy was more effective for extending mushroom shelf-life than higher doses. The preservative performance of chitosan-based films was improved by combining the compound with other hydrocolloids, such as oil, protocatechuic acid, and wax. The CA storage conditions recommended for king oyster mushrooms are 5kPa $O_2$ and 10 to 15kPa $CO_2$ at temperatures below $10^{\circ}C$. Active MA packaging with microperforated PP film was also effective for maintaining quality during storage.

A Study on Emotions, Feelings of Discomfort, and Nursing Needs of the Women in the Possibility of Abortion : Centered on the Threatened Abortion and Habitual Abortion during Hospitalization (유산 가능성 임부의 정서, 불편감 및 간호요구에 관한 연구)

  • Youn, In-Sook
    • Women's Health Nursing
    • /
    • v.1 no.1
    • /
    • pp.119-137
    • /
    • 1995
  • Maternity nurses' roles are to find out women's various responses related to the health problems during pregnancy, to intervene adequate nursing and supports, and to help them adapt satisfactorily to new situation, such as hospitalization. The purposes of this study are : firstly, to inquire about women's emotional status, feeling of discomfort, and the nursing need during hospitalization because of discomfort, and the nursing needs during hospitalization because of the possibility of abortion by threatened and habitual abortion : secondly, to provide fundamental data for developing adequate nursing intervention and improving hospital management. The subjects of this study were 62 women who were hospitalized, visited out-patient clinic for follow-up, and stayed at home after discharge since August, 1993 from one hospital located in Seoul, from March 23 to April 13, 1994. The questionnaire was consisted of 21 items of emotion(Reliability Cronbach's alpa, .77), 19 items of feeling of discomfort(.79), and 21 items of nursing needs (.89), and nurses' performance according to nursing needs,(.90). These were measured by using Likert Scale and analyzed by using SPSS / $PC^+$ with the descriptive statistics, $X^2$-test, and ANOVA. Research findings are as follows : 1) The subjects' average age, hospitalized days, and gestational age are 32.2, 15.7, 12.9 by respectively. 2) 88.7% of the subjects are getting antepatal care, 66.1% are experiencing 1.75 times of spontaneous abortion, and 82.3% are nuclear family. 3) The Emotions were mainly comprized negative and subjective state of minds such as uneasiness, anxiety, and discomfort. The domains of emotions were related to 'fetus', 'herself', 'hospitalization', and 'husband's 'families', in rank. The highest scored item was "I, above anyone else, am mostly stressed from abortion." 4) The feelings of discomforts were firstly related to 'personal discomfort arising from absolute bed rest', 'meals provided', Usage of hospital, perse', 'health team', in rank. 5) The nursing needs frequently pointed out were 'Nurses kindly explain of me the purpose, method, and results of the lab. test', 'Nurses sincerely pay attention to my word in communication'. The least nursing needs were 'Nurses observe my feces and whether I have constipation or not'. 'When I can't move, nurses help me by holding my arms or pulling my bed'. 6) The highest performed items were 'Nurses observe whether I bleed or not', and 'Nurses give me drug with exact dose in time'. The least performed items was about hospital environment, such as 'Temperature, ventilation & humidity in the room should be controlled'. 7) Besides religion that is related to nursing need with statistically significant difference, none of general characteristics were related to emotion, feeling of discomfort, and nursing needs.

  • PDF

Evaluation of Odor Reduction in the Enclosed Pig Building Through Spraying Biological Additives (생물학적 첨가제 살포에 의한 밀폐형 돈사에서의 악취 저감 평가)

  • 김기연;최홍림;고한종;이용기;김치년
    • Journal of Animal Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.467-478
    • /
    • 2006
  • Maintenance of an optimal air quality in the enclosed pig building is potentially important in terms of pig performance and farmer health. The objective of this on-site experiment is to evaluate and compare efficiencies of currently utilized biological additives to reduce odor emissions from the enclosed pig building. As a result, generally all the additives except for salt water, artificial spice and essential oil were proved ineffective in reducing odor generation. The beneficial effects of salt water, artificial spice and essential oil on odor reduction were highlighted on ammonia, odor intensity and offensiveness, and sulfuric odorous compounds, respectively. To efficiently utilize odor masking agent such as the artificial spice, ventilation rate should keep slightly lower than the optimal level. Essential oil functioned well as not only masking agent but also antimicrobial agent for reducing odor. To precisely quantify odor concentration, it should be measured by not the odor sensor but the olfactometry technique.

Fire Suppression Test using the Automatic Monitor System for Double-Deck Tunnel (복층터널 자동 모니터 소화설비를 이용한 화재진압 실험)

  • Park, Jin-Ouk;Yoo, Yong-Ho;Kim, Hwi-Seung;Park, Byoung-Jik;Kim, Yang-Kyun
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.40-46
    • /
    • 2017
  • As one of the solutions to deal with economic loss caused by traffic congestion in metropolitan area, a deep underground road has been planned and implemented at home and abroad. The part of them has been pushed ahead with a double-deck scheme which has an advantage in constructability and cost efficiency comparing to traditional road tunnel. However, the double-deck tunnel has a lower floor height than the general road tunnel due to the special structure used as the upper and lower lines by installing the middle slab on one excavation section. Therefore, it is relatively weak against fire accidents and ventilation problems occurring in tunnels. Thus study to develop the life safety system optimized to a double-deck tunnel has been systematically carried out in order to overcome their weak point. In this study, automatic monitoring fire extinguisher (AMFE) is developed to suppress a fire and prevent its spread at early stage of tunnel fire, conducting the performance test through vehicle fire tests as verification. The tests were conducted with AMFE being 30 m apart from the vehicle and 10 m apart from engine room. As a results, it was confirmed that AMFE enables to suppress a fire and prevent its spread in both cases.

Method for Preventing Asphyxiation Accidents by a CO2 Extinguishing System on a Ship (선박 내 CO2 소화설비에 의한 질식사고 방지 기법)

  • Ha, Yeon-Chul;Seo, Jung-Kwan;Hwang, Jun-Ho;Im, Kichang;Ryu, Sang-Hoon
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.57-64
    • /
    • 2015
  • Carbon dioxide extinguishing systems are broadly used for onshore and offshore fire accidents because of excellent performance and low cost. However, there is risk with carbon dioxide systems, which have caused many injuries and deaths by suffocation associated with industrial and marine fire protection applications. In this study, a numerical analysis was performed to predict the fire suppression characteristics of a carbon dioxide system in the compressor room of ships. A double protection safety system is suggested to prevent suffocation accidents from carbon dioxide extinguishing systems. Four scenarios were selected to study the variation of the heat release rate, maximum temperature, a $CO_2$ and $O_2$ mole fraction, and fire suppression characteristics with the carbon dioxide system. The importance of proper design is suggested for a ventilation system in the compressor room of ships.

Membrane-based Direct Air Capture Technologies (분리막을 이용한 공기 중 이산화탄소 제거 기술)

  • Yoo, Seung Yeon;Park, Ho Bum
    • Membrane Journal
    • /
    • v.30 no.3
    • /
    • pp.173-180
    • /
    • 2020
  • As the demand for fossil fuels continues to increase worldwide, carbon dioxide (CO2) concentration in the air has increased over the centuries. The way to reduce CO2 emissions to the atmosphere, carbon capture and sequestration (CCS) technology have been developed that can be applied to power plants and factories, which are primary emission sources. According to the climate change mitigation policy, direct air capture (DAC) in air, referred to as "negative emission" technology, has a low CO2 concentration of 0.04%, so it is focused on adsorbent research, unlike conventional CCS technology. In the DAC field, chemical adsorbents using CO2 absorption, solid absorbents, amine-functionalized materials, and ion exchange resins have been studied. Since the absorbent-based technology requires a high-temperature heat treatment process according to the absorbent regeneration, the membrane-based CO2 capture system has a great potential Membrane-based system is also expected for indoor CO2 ventilation systems and immediate CO2 supply to smart farming systems. CO2 capture efficiency should be improved through efficient process design and material performance improvement.