• 제목/요약/키워드: Venom production

검색결과 35건 처리시간 0.025초

인체폐암세포에서 봉독에 의한 prostagladin E2 생성 및 telomerase 활성 저하 (Bee Venom-induced Growth Inhibition of Human Lung Cancer Cells was Associated with Inhibition of Prostagladin E2 Production and Telomerase Activity.)

  • 김종환;황원덕;김병우;최영현
    • 생명과학회지
    • /
    • 제19권4호
    • /
    • pp.502-507
    • /
    • 2009
  • 본 연구에서는 봉독의 처리에 따른 A549 폐암세포의 증식억제에서 $PGE_2$ 생성 및 telomerase 활성의 변화 관련성을 조사하였다. A549 세포의 증식은 봉독 처리에 의하여 유의적으로 감소되었으며, 이는 apoptosis 유발과 연관성이 있음을 알 수 있었다. 봉독 처리 농도의 증가에 따라 COX-2의 발현이 전사 및 번역 수준에서 모두 감소되었으며 이에 따른 $PGE_2$의 생성이 현저하게 감소되었으나, COX-1의 발현에는 큰 변화가 없었다. 또한 봉독 처리에 따라 telomere 조절인자들 중, hTERT, hTR 및 c-myc의 발현이 억제되었으며, telomerase의 활성도 매우 감소되었다. 본 연구의 결과는 $PGE_2$ 생성과 telomerase 활성 저하가 봉독의 항암 작용 표적인자로서 작용될 수 있음을 보여준다.

봉독요법(蜂毒療法)의 항염증(抗炎症) 기전(機轉) 연구(硏究)에 관(關)한 고찰(考察) (The Review on the Study related to Anti-inflammatory Mechanism of Bee Venom Therapy)

  • 최정식;박장우;오민석
    • 혜화의학회지
    • /
    • 제15권1호
    • /
    • pp.141-160
    • /
    • 2006
  • The obtained results are summarized as follows 1. New findings are reporting year by year as for the study related to Anti-inflammatory mechanism of Bee Venom therapy. 2. The Anti-inflammatory effect of Bee Venom therapy is achieved through counterirritation, stimulations to adrenal cortex, immuno-regulation, antioxidation, removal of free radicals, modulation of AGP gene induction. 3. The chief components of Bee Venom related to Anti-inflammatory effect are Melittin, MCD peptide, Apamin, Adolapin etc. 4. Melittin binds to secretory phospholipase A2 and inhibits its enzymatic activity. 5. Melittin blocks neutophil O2-production. 6. MCD peptide(Peptide 401) stimulates the mast cell secrets histamine, Anti-inflammatory effect caused by this is 'conterirritation'. 7. Melittin & Apamin have an anti-inflammatory effect by inducing cortisone secretion. 8. MCD peptide & Apamin increase immunologic fuction by stimulating hypophysis & adrenal cortex and have an anti-inflammatory effect by inhibiting synthesis of prostaglandin from arachidonic acid. 9. Adolapin have an anti-inflammatory effect by inhibiting COX. 10. Bee Venom have an anti-inflammatory effect by suppressing AGP($\alpha$-acid glycoprotein). 11. Bee Venom have an anti-inflammatory effect by inhibiting NO, iNOS, PLA2, COX-2, TNF-$\alpha$, IL-1, NF-${\kappa}B$, MAP kinase.

  • PDF

Honey Bee Venom (Apis mellifera) Contains Anticoagulation Factors and Increases the Blood-clotting Time

  • Zolfagharian, Hossein;Mohajeri, Mohammad;Babaie, Mahdi
    • 대한약침학회지
    • /
    • 제18권4호
    • /
    • pp.7-11
    • /
    • 2015
  • Objectives: Bee venom (BV) is a complex mixture of proteins and contains proteins such as phospholipase and melittin, which have an effect on blood clotting and blood clots. The mechanism of action of honey bee venom (HBV, Apis mellifera) on human plasma proteins and its anti-thrombotic effect were studied. The purpose of this study was to investigate the anti-coagulation effect of BV and its effects on blood coagulation and purification. Methods: Crude venom obtained from Apis mellifera was selected. The anti-coagulation factor of the crude venom from this species was purified by using gel filtration chromatography (sephadex G-50), and the molecular weights of the anti-coagulants in this venom estimated by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Blood samples were obtained from 10 rabbits, and the prothrombin time (PT) and the partial thromboplastin time (PTT) tests were conducted. The approximate lethal dose (LD) values of BV were determined. Results: Crude BV increased the blood clotting time. For BV concentrations from 1 to 4 mg/mL, clotting was not observed even at more than 300 seconds, standard deviations $(SDs)={\pm}0.71$; however, clotting was observed in the control group 13.8 s, $SDs={\pm}0.52$. Thus, BV can be considered as containing anti-coagulation factors. Crude BV is composed 4 protein bands with molecular weights of 3, 15, 20 and 41 kilodalton (kDa), respectively. The $LD_{50}$ of the crude BV was found to be $177.8{\mu}g/mouse$. Conclusion: BV contains anti-coagulation factors. The fraction extracted from the Iranian bees contains proteins that are similar to anti-coagulation proteins, such as phospholipase $A_2(PLA_2)$ and melittin, and that can increase the blood clotting times in vitro.

Anti-inflammatory mechanism of melittin, a component of bee venom in Raw 264.7 cells and Synoviocyte

  • Park, Hye-Ji;Kim, Kee-Hyun;Lee, Chung-Ou;Lee, Sun-Young;Lee, Seung-Ho;Son, Dong-Ju;Yun, Yeo-Pyo;Oh, Ki-Wan;Oh, Goo-Taeg
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.93.1-93.1
    • /
    • 2003
  • Bee Venom (BV) has been treated in inflammatory diseases such as rheumatoid arthritis (RA). Bee venom contains several biologically active non-peptide substances as well as two major known peptides; the hemolytic peptide melittin (50%) and the neurotoxic peptide apamin, and a number of minor peptides. Previous our study showed that BV blocked LPS and SNP-induced production of NO and PG through inactivation of NF-kB which regulates expression of COX-2 and iNOS. (omitted)

  • PDF

Bee Venom (Apis Mellifera) an Effective Potential Alternative to Gentamicin for Specific Bacteria Strains - Bee Venom an Effective Potential for Bacteria-

  • Zolfagharian, Hossein;Mohajeri, Mohammad;Babaie, Mahdi
    • 대한약침학회지
    • /
    • 제19권3호
    • /
    • pp.225-230
    • /
    • 2016
  • Objectives: Mellitine, a major component of bee venom (BV, Apis mellifera), is more active against gram positive than gram negative bacteria. Moreover, BV has been reported to have multiple effects, including antibacterial, antivirus, and anti-inflammation effects, in various types of cells. In addition, wasp venom has been reported to have antibacterial properties. The aim of this study was to evaluate the antibacterial activity of BV against selected gram positive and gram negative bacterial strains of medical importance. Methods: This investigation was set up to evaluate the antibacterial activity of BV against six grams positive and gram negative bacteria, including Staphylococcus aureus (S. aureus), Salmonella typhimurium, Escherichia coli (E. coli) O157:H7, Pseudomonas aeruginosa, Burkholderia mallei and Burkholderia pseudomallei. Three concentrations of crude BV and standard antibiotic (gentamicin) disks as positive controls were tested by using the disc diffusion method. Results: BV was found to have a significant antibacterial effect against E. coli, S. aureus, and Salmonella typhyimurium in all three concentrations tested. However, BV had no noticeable effect on other tested bacteria for any of the three doses tested. Conclusion: The results of the current study indicate that BV inhibits the growth and survival of bacterial strains and that BV can be used as a complementary antimicrobial agent against pathogenic bacteria. BV lacked the effective proteins necessary for it to exhibit antibacterial activity for some specific strains while being very effective against other specific strains. Thus, one may conclude, that Apis mellifera venom may have a specific mechanism that allows it to have an antibacterial effect on certain susceptible bacteria, but that mechanism is not well understood.

The Effects of Bee Venom Pharmacopuncture on Middle Cerebral Artery Occlusion Ischemic Cerebral Damage in Mice

  • Lee, Ji-In;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • 제36권4호
    • /
    • pp.220-229
    • /
    • 2019
  • Background: The therapeutic potential of Bee Venom Pharmacopuncture (BVP) on acute ischemic cerebral infraction was determined in mice in vivo and in vitro. Methods: Analysis of acute ischemic cerebral infraction was performed using 7 week old male ICR mice (n = 20) and microglial BV-2 cells. Bee venom ($5{\mu}g/kg$) was injected into the caudal vein of middle cerebral artery occlusion (MCAo) mice (1 hour after reperfusion, 3 hours after MCAo probe insertion), and also used to treat LPS-stimulated microglial BV-2 cells (1, 2, $5{\mu}g/mL$). Markers of inflammation were monitored. Results: NO declined statistically significantly in BVP treated MCAo mice compared to the untreated MCAo group (p < 0.05). Compared to the MCAo group, the BVP-treated MCAo group showed a decreased production volume of malondialdehyde, but an increased glutathione/oxidized glutathione ratio. Compared to the untreated MCAo group, the BVP treated MCAo group showed a statistically significant decline in TNF and $IL-1{\beta}$ levels (p < 0.05). BVP inhibited the levels of p65, p50, $p-I{\kappa}B-{\alpha}$, and levels of p-ERK1/2, p-JNK2, p-P38 declined. Conclusion: BVP is effective at dampening the inflammatory response in vivo and in vitro and may supplement rt-PA treatment.

Inhibitory Activity of Bumblebee Worker (Bombus terrestris L.) Venoms on Nitric Oxide, TNF-${\alpha}$ and IL-6 Production in Lipopolysaccharide-Activated Macrophages

  • Han Sang-Mi;Lee Kwang-Gill;Yeo Joo-Hong;Kweon Hae-Yong;Woo Soon-Ok;Yoon Hyung-Joo;Baek Ha-Ju;Park Kwan-Kyu
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제12권2호
    • /
    • pp.69-73
    • /
    • 2006
  • To elucidate the composition of bumblebee (Bomb us terrestris) venom (BBV) and the anti-inflammatory effect of BBV. The major components of BBV by LC chromatography and SDS-PAGE were identified. The production of nitric oxide (NO) and proinflammatory cytokines was examined by lipopolysaccharide (LPS) in a macrophage cell line, RAW 264.7 cells, with BBV. BBV inhibits LPS-induced NO in a dose dependent manner. We also found that BBV inhibits proinflammatory cytokine, tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6 production. These findings mean that BBV can be used in controlling macrophages mediated inflammation related disease. Additional studies on the pharmacological aspects of the individual components of BBV are recommended for future trials.

Bee Venom Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells

  • Jeong, Chang Hee;Cheng, Wei Nee;Bae, Hyojin;Lee, Kyung Woo;Han, Sang Mi;Petriello, Michael C.;Lee, Hong Gu;Seo, Han Geuk;Han, Sung Gu
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권10호
    • /
    • pp.1827-1836
    • /
    • 2017
  • The world dairy industry has long been challenged by bovine mastitis, an inflammatory disease, which causes economic loss due to decreased milk production and quality. Attempts have been made to prevent or treat this disease with multiple approaches, primarily through increased abuse of antibiotics, but effective natural solutions remain elusive. Bee venom (BV) contains a variety of peptides (e.g., melittin) and shows multiple bioactivities, including prevention of inflammation. Thus, in the current study, it was hypothesized that BV can reduce inflammation in bovine mammary epithelial cells (MAC-T). To examine the hypothesis, cells were treated with LPS ($1{\mu}g/ml$) to induce an inflammatory response and the anti-inflammatory effects of BV (2.5 and $5{\mu}g/ml$) were investigated. The cellular mechanisms of BV against LPS-induced inflammation were also investigated. Results showed that BV can attenuate expression of an inflammatory protein, COX2, and pro-inflammatory cytokines such as IL-6 and TNF-${\alpha}$. Activation of NF-${\kappa}B$, an inflammatory transcription factor, was significantly downregulated by BV in cells treated with LPS, through dephosphorylation of ERK1/2. Moreover, pretreatment of cells with BV attenuated LPS-induced production of intracellular reactive oxygen species (e.g., superoxide anion). These results support our hypothesis that BV can decrease LPS-induced inflammatory responses in bovine mammary epithelial cells through inhibition of oxidative stress, NF-${\kappa}B$, ERK1/2, and COX-2 signaling.

검은과부거미 (Latrodectus mactans) 독 생성과정의 미세구조 (Fine Structural Aspects of the Venom Production in the Black Widow Spider, Latrodectus mactans)

  • 문명진
    • Applied Microscopy
    • /
    • 제26권1호
    • /
    • pp.17-31
    • /
    • 1996
  • 검은과부거미의 독 분비장치는 두흉부에 있는 가위턱과 한쌍의 독선으로 이루어져 있다. 독선은 한겹의 얇은 장막과 횡문근 섬유의 다발에 의해 둘러싸여 있었고. 근육층을 따라서 운동신경의 축삭 돌기와 근섬유 사이에 신경근육간 연접이 형성되어 있었다. 분비상피를 이루는 단층 원주상피세포에는 복잡한 수지상의 돌기가 형성되었고, 독선 전체가 단포상선을 이루고 있음이 관찰되었다. 상피의 분비면은 기저막으로부터 선의 내강쪽으로 확장된 세포질 돌기에 의해 표면적이 현저히 증가되었고, 상피의 내강면에는 조밀한 미세융모가 형성되어 있었다. 독성 분비물은 상피세포 내에서 두 종류의 분비과립으로부터 생성되었다. 분비기동안 이들 분비과립은 과적의 형태로 변형, 농축된 후, 이출분비의 형태로 내강으로 방출되었다. 방출 후의 기저부 상피세포들은 고도의 증식과정을 거쳐 원주상의 상피세포로 재생됨이 확인되었다.

  • PDF

Atopic Dermatitis-Related Inflammation in Macrophages and Keratinocytes: The Inhibitory Effects of Bee Venom

  • Kim, Deok-Hyun;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • 제36권2호
    • /
    • pp.80-87
    • /
    • 2019
  • Background: This study investigated the anti-inflammatory effects of bee venom (BV) through the inhibition of nuclear factor kappa beta ($NF-{\kappa}B$) expression in macrophages and keratinocytes. Methods: Cell viability assays were performed to investigate the cytotoxicity of BV in activated macrophages [lipopolysaccharide (LPS)] and keratinocytes [interferon-gamma/tumor necrosis factor-alpha ($IFN-{\gamma}/TNF-{\alpha}$)]. A luciferase assay was performed to investigate the cellular expression of $NF-{\kappa}B$ in relation to BV dose. The expression of $NF-{\kappa}B$ inhibitors ($p-I{\kappa}B{\alpha}$, $I{\kappa}B{\alpha}$, and p50 and p65) were determined by Western Blot analysis, and the electromobility shift assay. A nitrite quantification assay was performed to investigate the effect of BV, and $NF-{\kappa}B$ inhibitor on nitric oxide (NO) production in macrophages. In addition, Western Blot analysis was performed to investigate the effect of BV on the expression of mitogen-activated protein kinases (MAPK) in activated macrophages and keratinocytes. Results: BV was not cytotoxic to activated macrophages and keratinocytes. Transcriptional activity of $NF-{\kappa}B$, and p50, p65, and $p-I{\kappa}B{\alpha}$ expression was reduced by treatment with BV in activated macrophages and keratinocytes. Treatment with BV and an $NF-{\kappa}B$ inhibitor, reduced the production of NO by activated macrophages, and also reduced $NF-{\kappa}B$ transcriptional activity in activated keratinocytes (compared with either BV, or $NF-{\kappa}B$ inhibitor treatment). Furthermore, BV decreased p38, p-p38, JNK, and p-JNK expression in LPS-activated macrophages and $IFN-{\gamma}/TNF-{\alpha}$-activated keratinocytes. Conclusion: BV blocked the signaling pathway of $NF-{\kappa}B$, which plays an important role in the inflammatory response in macrophages and keratinocytes. These findings provided the possibility of BV in the treatment of atopic dermatitis.