References
- Zhao X, Lacasse P. 2008. Mammary tissue damage during bovine mastitis: causes and control. J. Anim. Sci. 86: 57-65.
- Contreras GA, Rodriguez JM. 2011. Mastitis: comparative etiology and epidemiology. J. Mammary Gland Biol. Neoplasia 16: 339-356. https://doi.org/10.1007/s10911-011-9234-0
- Bougarn S, Cunha P, Gilbert F, Meurens F, Rainard P. 2011. Technical note: validation of candidate reference genes for normalization of quantitative PCR in bovine mammary epithelial cells responding to inflammatory stimuli. J. Dairy Sci. 94: 2425-2430. https://doi.org/10.3168/jds.2010-3859
- Takeuchi O, Akira S. 2010. Pattern recognition receptors and inflammation. Cell 140: 805-820. https://doi.org/10.1016/j.cell.2010.01.022
- Park BS, Song DH, Kim HM, Choi B-S, Lee H, Lee J-O. 2009. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458: 1191-1195. https://doi.org/10.1038/nature07830
- Song X, Zhang W, Wang T, Jiang H, Zhang Z, Fu Y, et al. 2014. Geniposide plays an anti-inflammatory role via regulating TLR4 and downstream signaling pathways in lipopolysaccharide-induced mastitis in mice. Inflammation 37: 1588-1598. https://doi.org/10.1007/s10753-014-9885-2
-
Lee S, Shin S, Kim H, Han S, Kim K, Kwon J, et al. 2011. Anti-inflammatory function of arctiin by inhibiting COX-2 expression via NF-
${\kappa}B$ pathways. J. Inflamm. 8: 16. https://doi.org/10.1186/1476-9255-8-16 - Neyrinck AM, Van Hee VF, Bindels LB, De Backer F, Cani PD, Delzenne NM. 2013. Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: potential implication of the gut microbiota. Br. J. Nutr. 109: 802-809. https://doi.org/10.1017/S0007114512002206
- Kang S, Lee JS, Lee HC, Petriello MC, Kim BY, Do JT, et al. 2016. Phytoncide extracted from pinecone decreases LPSinduced inflammatory responses in bovine mammary epithelial cells. J. Microbiol. Biotechnol. 26: 579-587. https://doi.org/10.4014/jmb.1510.10070
- Sawant A, Sordillo L, Jayarao B. 2005. A survey on antibiotic usage in dairy herds in Pennsylvania. J. Dairy Sci. 88: 2991-2999. https://doi.org/10.3168/jds.S0022-0302(05)72979-9
- Pol M, Ruegg P. 2007. Treatment practices and quantification of antimicrobial drug usage in conventional and organic dairy farms in Wisconsin. J. Dairy Sci. 90: 249-261. https://doi.org/10.3168/jds.S0022-0302(07)72626-7
- Gomes FI, Martins N, Ferreira IC, Henriques M. 2016. Antimicrobial potential of Eucalyptus globulus against biofilms of Staphylococcus aureus isolated from bovine mastitis. Preceedings of Biofilms 7 Conference 2016, Porto, Portugal, 26-28 June 2016.
- Kocyigit A, Guler EM, Kaleli S. 2016. Anti-inflammatory, antioxidant and anti-genotoxic effects of different doses of bee venom on adjuvant induce arthritis in rats. J. Int. Soc. Antioxid. Nutr. Health 3.
- Tosteson MT, Tosteson D. 1981. The sting. Melittin forms channels in lipid bilayers. Biophys. J. 36: 109-116. https://doi.org/10.1016/S0006-3495(81)84719-4
- Lee G, Bae H. 2016. Anti-inflammatory applications of melittin, a major component of bee venom: detailed mechanism of action and adverse effects. Molecules 21: 616. https://doi.org/10.3390/molecules21050616
- Lee W-R, Kim K-H, An H-J, Kim J-Y, Han S-M, Lee K-G, et al. 2014. Protective effect of melittin against inflammation and apoptosis on Propionibacterium acnes-induced human THP-1 monocytic cell. Eur. J. Pharmacol. 740: 218-226. https://doi.org/10.1016/j.ejphar.2014.06.058
-
Wang C, Chen T, Zhang N, Yang M, Li B, Lu X, et al. 2009. Melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by activating CaMKII-TAK1-JNK/p38 and inhibiting
$I{\kappa}B{\alpha}$ kinase-NF${\kappa}B$ . J. Biol. Chem. 284: 3804-3813. https://doi.org/10.1074/jbc.M807191200 -
Park HJ, Lee SH, Son DJ, Oh KW, Kim KH, Song HS, et al. 2004. Antiarthritic effect of bee venom: inhibition of inflammation mediator generation by suppression of NF-
${\kappa}B$ through interaction with the p50 subunit. Arthritis Rheum. 50: 3504-3515. https://doi.org/10.1002/art.20626 - Han S, Yeo J, Baek H, Lin SM, Meyer S, Molan P. 2009. Postantibiotic effect of purified melittin from honeybee (Apis mellifera) venom against Escherichia coli and Staphylococcus aureus. J. Asian Nat. Prod. Res. 11: 796-804. https://doi.org/10.1080/10286020903164277
-
Wang J, Guo C, Wei Z, He X, Kou J, Zhou E, et al. 2016. Morin suppresses inflammatory cytokine expression by downregulation of nuclear factor-
${\kappa}B$ and mitogen-activated protein kinase (MAPK) signaling pathways in lipopolysaccharidestimulated primary bovine mammary epithelial cells. J. Dairy Sci. 99: 3016-3022. https://doi.org/10.3168/jds.2015-10330 - Han SG, Newsome B, Hennig B. 2013. Titanium dioxide nanoparticles increase inflammatory responses in vascular endothelial cells. Toxicology 306: 1-8. https://doi.org/10.1016/j.tox.2013.01.014
-
Jeong CH, Seok JS, Petriello MC, Han SG. 2017. Arsenic downregulates tight junction claudin proteins through p38 and NF-
${\kappa}B$ in intestinal epithelial cell line, HT-29. Toxicology 379: 31-39. https://doi.org/10.1016/j.tox.2017.01.011 - Chen C. 2010. Lipids: COX-2's new role in inflammation. Nat. Chem. Biol. 6: 401-402. https://doi.org/10.1038/nchembio.375
- Zbinden C, Stephan R, Johler S, Borel N, Bunter J, Bruckmaier RM, et al. 2014. The inflammatory response of primary bovine mammary epithelial cells to Staphylococcus aureus strains is linked to the bacterial phenotype. PLoS One 9: e87374. https://doi.org/10.1371/journal.pone.0087374
- Lykkesfeldt J, Svendsen O. 2007. Oxidants and antioxidants in disease: oxidative stress in farm animals. Vet. J. 173: 502-511. https://doi.org/10.1016/j.tvjl.2006.06.005
- Yu M-H, Choi J-H, Chae I-G, Im H-G, Yang S-A, More K, et al. 2013. Suppression of LPS-induced inflammatory activities by Rosmarinus officinalis L. Food Chem. 136: 1047-1054. https://doi.org/10.1016/j.foodchem.2012.08.085
- Sobral F, Sampaio A, Falcao S, Queiroz MJR, Calhelha RC, Vilas-Boas M, et al. 2016. Chemical characterization, antioxidant, anti-inflammatory and cytotoxic properties of bee venom collected in Northeast Portugal. Food Chem. Toxicol. 94: 172-177. https://doi.org/10.1016/j.fct.2016.06.008
- Klastrup N. 1985. Bovine mastitis. Definition and guidelines for diagnosis. Kieler Milchwirtschaftliche Forschungsberichte.
- Burvenich C, Van Merris V, Mehrzad J, Diez-Fraile A, Duchateau L. 2003. Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res. 34: 521-564. https://doi.org/10.1051/vetres:2003023
- Gunther J, Koy M, Berthold A, Schuberth H-J, Seyfert H-M. 2016. Comparison of the pathogen species-specific immune response in udder derived cell types and their models. Vet. Res. 47: 22. https://doi.org/10.1186/s13567-016-0307-3
- Ginsburg I. 2002. Role of lipoteichoic acid in infection and inflammation. Lancet Infect. Dis. 2: 171-179. https://doi.org/10.1016/S1473-3099(02)00226-8
- Wellnitz O, Arnold ET, Bruckmaier RM. 2011. Lipopolysaccharide and lipoteichoic acid induce different immune responses in the bovine mammary gland. J. Dairy Sci. 94: 5405-5412. https://doi.org/10.3168/jds.2010-3931
-
Fan W-J, Li H-P, Zhu H-S, Sui S-P, Chen P-G, Deng Y, et al. 2016. NF-
${\kappa}B$ is involved in the LPS-mediated proliferation and apoptosis of MAC-T epithelial cells as part of the subacute ruminal acidosis response in cows. Biotechnol. Lett. 38: 1839-1849. https://doi.org/10.1007/s10529-016-2178-0 - Gunther J, Koczan D, Yang W, Nurnberg G, Repsilber D, Schuberth H-J, et al. 2009. Assessment of the immune capacity of mammary epithelial cells: comparison with mammary tissue after challenge with Escherichia coli. Vet. Res. 40: 1-14. https://doi.org/10.1051/vetres:2008039
-
Li D, Fu Y, Zhang W, Su G, Liu B, Guo M, et al. 2013. Salidroside attenuates inflammatory responses by suppressing nuclear factor-
${\kappa}B$ and mitogen activated protein kinases activation in lipopolysaccharide-induced mastitis in mice. Inflamm. Res. 62: 9-15. https://doi.org/10.1007/s00011-012-0545-4 - De UK, Mukherjee R. 2014. Activity of cyclooxygenase-2 and nitric oxide in milk leucocytes following intramammary inoculation of a bio-response modifier during bovine Staphylococcus aureus subclinical mastitis. Vet. Res. Commun. 38: 201-207. https://doi.org/10.1007/s11259-014-9604-3
-
Im EJ, Kim SJ, Hong SB, Park J-K, Rhee MH. 2016. Antiinflammatory activity of bee venom in BV2 microglial cells: mediation of MyD88-dependent NF-
${\kappa}B$ signaling pathway. Evid. Based Complement. Alternat. Med. 2016: 3704764. - Lee KG, Cho HJ, Bae YS, Park KK, Choe JY, Chung IK, et al. 2009. Bee venom suppresses LPS-mediated NO/iNOS induction through inhibition of PKC-alpha expression. J. Ethnopharmacol. 123: 15-21. https://doi.org/10.1016/j.jep.2009.02.044
- Boulanger V, Zhao X, Lacasse P. 2002. Protective effect of melatonin and catalase in bovine neutrophil-induced model of mammary cell damage. J. Dairy Sci. 85: 562-569. https://doi.org/10.3168/jds.S0022-0302(02)74109-X
- Banerjee C, Khatri P, Raman R, Bhatia H, Datta M, Mazumder S. 2014. Role of calmodulin-calmodulin kinase II, cAMP/protein kinase A and ERK 1/2 on Aeromonas hydrophila-induced apoptosis of head kidney macrophages. PLoS Pathog. 10: e1004018. https://doi.org/10.1371/journal.ppat.1004018
-
Liu J, Wang Y, Ouyang X. 2014. Beyond Toll-like receptors: Porphyromonas gingivalis induces IL-6, IL-8, and VCAM-1 expression through NOD-mediated NF-
${\kappa}B$ and ERK signaling pathways in periodontal fibroblasts. Inflammation 37: 522-533. https://doi.org/10.1007/s10753-013-9766-0 - Qiu L, Zhang B, Liu L, Wang X, Lei C, Lin Y, et al. 2017. The role of p38 MAPK, JNK, and ERK in antibacterial responses of Chilo suppressalis (Lepidoptera: Crambidae). J. Econ. Entomol. 110: 1460-1464. https://doi.org/10.1093/jee/tox126
-
Kim H-N, Kim D-H, Kim E-H, Lee M-H, Kundu JK, Na H-K, et al. 2014. Sulforaphane inhibits phorbol ester-stimulated IKK-NF-
${\kappa}B$ signaling and COX-2 expression in human mammary epithelial cells by targeting NF-${\kappa}B$ activating kinase and ERK. Cancer Lett. 351: 41-49. https://doi.org/10.1016/j.canlet.2014.03.037 -
Xu C-Q, Liu B-J, Wu J-F, Xu Y-C, Duan X-H, Cao Y-X, et al. 2010. Icariin attenuates LPS-induced acute inflammatory responses: involvement of PI3K/Akt and NF-
${\kappa}B$ signaling pathway. Eur. J. Pharmacol. 642: 146-153. https://doi.org/10.1016/j.ejphar.2010.05.012 - Gu SM, Park MH, Hwang CJ, Song HS, Lee US, Han SB, et al. 2015. Bee venom ameliorates lipopolysaccharide-induced memory loss by preventing NF-kappaB pathway. J. Neuroinflammation 12: 124. https://doi.org/10.1186/s12974-015-0344-2
-
Ishii HM, Murakashi E, Igarashi-Takeuchi H, Shoji H, Numabe Y. 2017. Alpha-lipoic acid inhibits NF-
${\kappa}B$ signal transduced inflammatory cytokines secretion in LPS-induced human gingival fibroblastsNihon Shishubyo Gakkai Kaishi 59: 28-38. https://doi.org/10.2329/perio.59.28 - Lapointe S, Brkovic A, Cloutier I, Tanguay JF, Arm JP, Sirois MG. 2010. Group V secreted phospholipase A2 contributes to LPS-induced leukocyte recruitment. J. Cell. Physiol. 224: 127-134.
-
Aggarwal S, Ichikawa H, Takada Y, Sandur SK, Shishodia S, Aggarwal BB. 2006. Curcumin (diferuloylmethane) downregulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of
$I{\kappa}B{\alpha}$ kinase and Akt activation. Mol. Pharmacol. 69: 195-206. - Tusiimire J, Wallace J, Woods N, Dufton MJ, Parkinson JA, Abbott G, et al. 2016. Effect of bee venom and its fractions on the release of pro-inflammatory cytokines in PMAdifferentiated U937 cells co-stimulated with LPS. Vaccines 4: 11. https://doi.org/10.3390/vaccines4020011
- Chung H-J, Lee J, Shin J-S, Kim M-R, Koh W, Kim M-J, et al. 2016. In vitro and in vivo anti-allergic and anti-inflammatory effects of eBV, a newly developed derivative of bee venom, through modulation of IRF3 signaling pathway in a carrageenan-induced edema model. PLoS One 11: e0168120. https://doi.org/10.1371/journal.pone.0168120
-
Kim W-H, An H-J, Kim J-Y, Gwon M-G, Gu H, Park J-B, et al. 2016. Bee venom inhibits Porphyromonas gingivalis lipopolysaccharides-induced pro-inflammatory cytokines through suppression of NF-
${\kappa}B$ and AP-1 signaling pathways. Molecules 21: 1508. https://doi.org/10.3390/molecules21111508
Cited by
- Evaluation of bee venom as a novel feed additive in fast-growing broilers vol.59, pp.4, 2017, https://doi.org/10.1080/00071668.2018.1476675
- 정제봉독의 MAC-T 세포에서 유단백 합성 촉진효과 vol.41, pp.3, 2017, https://doi.org/10.7853/kjvs.2018.41.3.171
- Moringa Extract Attenuates Inflammatory Responses and Increases Gene Expression of Casein in Bovine Mammary Epithelial Cells vol.9, pp.7, 2017, https://doi.org/10.3390/ani9070391
- Evaluating the effects of honey bee ( APIS MELLIFERA L.) venom on the expression of insulin sensitivity and inflammation‐related genes in co‐culture of adipocytes and macr vol.50, pp.5, 2017, https://doi.org/10.1111/1748-5967.12431
- Protective Effects of Bee Venom against Endotoxemia-Related Acute Kidney Injury in Mice vol.9, pp.7, 2020, https://doi.org/10.3390/biology9070154
- Short communication: Effects of moringa extract on adhesion and invasion of Escherichia coli O55 in bovine mammary epithelial cells vol.103, pp.8, 2020, https://doi.org/10.3168/jds.2019-17774
- Protective effects of honey and bee venom against lipopolysaccharide and carbon tetrachloride-induced hepatoxicity and lipid peroxidation in rats vol.9, pp.5, 2020, https://doi.org/10.1093/toxres/tfaa077
- Anti-inflammatory activities of arthropod peptides: a systematic review vol.27, pp.None, 2017, https://doi.org/10.1590/1678-9199-jvatitd-2020-0152
- Effect of Combined Bee Venom Acupuncture and NSAID Treatment for Non-Specific Chronic Neck Pain: A Randomized, Assessor-Blinded, Pilot Clinical Trial vol.13, pp.7, 2017, https://doi.org/10.3390/toxins13070436
- Bee venom ameliorates cardiac dysfunction in diabetic hyperlipidemic rats vol.246, pp.24, 2021, https://doi.org/10.1177/15353702211045924