• Title/Summary/Keyword: Velocity estimation technique

Search Result 119, Processing Time 0.03 seconds

Underwater Target Information Estimation using Proximity Sensor (근접센서를 이용한 수중 표적 정보 추정기법)

  • Kim, JungHoon;Yoon, KyungSik;Seo, IkSu;Lee, KyunKyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.174-180
    • /
    • 2015
  • In this paper, we propose the passive sonar signal processing technique for estimating target information using proximity sensor. This algorithm is performed by single sensor which is constituted underwater sensor network and has a hierarchical structure. The estimated parameter is the velocity, the depth, the distance and bearing at CPA situations and we can improve the accuracy of signal processing techniques through having a hierarchical structure. We verify the performance of the proposed method by computer simulation and then we check the result that 20% error can be occurred in maximum detectable range. We also confirm that proposed method has the reliability in the actual sea environment through the sea experiment.

Optimal Parameters Estimation of Diffusion-Analogy Geomorphologic Instantaneous Unit Hydrograph Model (확산-유추 지형학적 순간단위도 모형의 최적매개변수 추정)

  • Kim, Joo-Cheol;Choi, Yong-Joon
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.385-394
    • /
    • 2011
  • In this study, optimal parameters of diffusion-analogy GIUH were calculated by separating channel and hillslope from drainage structures in the basin. Parameters of the model were composed of channel and hillslope, each velocity($u_c$, $u_h$) and diffusion coefficient($D_c$, $D_h$). Tanbu subwatershed in Bocheong river basin as a target basin was classified as 4th rivers by Strahler's ordering scheme. The optimization technique was applied to the SCE-UA, the estimated optimal parameters are as follows. $u_c$ : 0.589 m/s, $u_h$ : 0.021 m/s, $D_c$ : $34.469m^2/s$, $D_h$ : $0.1333m^2/s$. As a verification for the estimated parameters, the error of average peak flow was about 11 % and the error of peaktime was 0.3 hr. By examining the variability of parameters, the channel diffusion coefficient didn't have significant effect on hydrological response function. by considering these results, the model is expected to be simplified in the future.

Experimental Study on Regenerative Cooling Characteristics for Uni-element Injector Face during prolonged Combustion Time (장시간 연소에 따른 단일 인젝터 분사기면 냉각 특성연구)

  • Jeon, Jun-Su;Shin, Hun-Cheol;Lee, Seok-Jin;Chung, Hae-Seung;Kim, Young-Wook;Ko, Young-Sung;Kim, Yoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.399-402
    • /
    • 2006
  • The purpose of this study is to propose a method for protecting injector face for prolonged combustion time and heat flux measurement technique at the injector face. To obtain basic design data and verify the performance of the proposed method, a regenerative cooling injector face was designed and manufactured for the hot firing test. Due to the safety reason, hot fire test were performed 3, 10, 30, 60 and 120 seconds time step. The discrepancy between analytical results adapting to combustion and nozzle and experimental results is believed due to the over estimation of the convection heat transfer calculation. for the injector face, flow velocity is almost negligible, therefore radiation is more important than convection. Consecutive hot firing test during 10, 30, 60 and 120 seconds combustion time shows good repeatability.

  • PDF

Effects of Accelerometer Signal Processing Errors on Inertial Navigation Systems (가속도계 신호 처리 오차의 관성항법장치 영향 분석)

  • Sung, Chang-Ky;Lee, Tae-Gyoo;Lee, Jung-Shin;Park, Jai-Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.71-80
    • /
    • 2006
  • Strapdown Inertial navigation systems consist of an inertial sensor assembly(ISA), electronic modules to process sensor data, and a navigation computer to calculate attitude, velocity and position. In the ISA, most gryoscopes such as RLGs and FOGs, have digital output, but typical accelerometers use current as an analog output. For a high precision inertial navigation system, sufficient stability and resolution of the accelerometer board converting the analog accelerometer output into digital data needs to be guaranteed. To achieve this precision, the asymmetric error and A/D reset scale error of the accelerometer board must be properly compensated. If the relation between the acceleration error and the errors of boards are exactly known, the compensation and estimation techniques for the errors may be well developed. However, the A/D Reset scale error consists of a pulse-train type term with a period inversely proportional to an input acceleration additional to a proportional term, which makes it difficult to estimate. In this paper, the effects on the acceleration output for auto-pilot situations and the effects of A/D reset scale errors during horizontal alignment are qualitatively analyzed. The result can be applied to the development of the real-time compensation technique for A/D reset scale error and the derivation of the design parameters for accelerometer board.

Analytical Solutions for Predicting Movement Rate of Submerged Mound (수중둔덕의 이동율 예측을 위한 해석해)

    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.4
    • /
    • pp.165-173
    • /
    • 1998
  • Analytical solutions to predict the movement rate of submerged mound are derived using the convection coefficient and the joint distribution function of wave heights and periods. Assuming that the sediment is moved onshore due to the velocity asymmetry of Stokes' second order nonlinear wave theory, the micro-scale bedload transport equation is applied to the sediment conservation. The nonlinear convection-diffusion equation can then be obtained which governs the migration of submerged mound. The movement rate decreases exponentially with increasing the water depth, but the movement rate tends to increase as the spectral width parameter, $ u$ increases. In comparison of the analytical solution with the measured data, it is found that the analytical solution overestimates the movement rate. However, the agreement between the analytical solution and the measured data is encouraging since this over-estimation may be due to the inaccuracy of input data and the limitation of sediment transport model. In particular, the movement rates with respect to the water depth predicted by the analytical solution are in very good agreement with the estimated result using the discritization technique with the hindcast wave data.

  • PDF

Investigation of the refined safety factor for berthing energy calculation

  • Kim, Sang Woo;Lee, Seung Jae;Kim, Young Tae;Kim, Do Kyun
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.785-797
    • /
    • 2020
  • As the growth of world trade has surged rapidly over the past years, the number is expected to continue growing over the coming years. Although the transportation costs can be reduced by using larger vessels, however, new berthing structures have to be constructed in order to cater for the larger vessels. This leads to a need for researching on designing a better berthing structure. For optimization of berthing structure design, we need to provide a better estimation of berthing energy than the previous methods in the existing guidelines. In this study, several berthing parameters were collected from previous works and researches. Moreover, the scenarios were selected efficiently by using a sampling technique. First, the berthing energy was calculated by executing 150 numerical simulations. Then, the numerical simulation results were compared with the results calculated by existing methods quantitatively to investigate the sensitivity of the berthing parameters and the accuracy of existing methods. The numerical method results have shown some deviation with respect to the existing method results in which the degree of deviation varies with the methods and the tendency of differences is dependent on certain berthing parameters. Then, one of the existing methods which has shown a small deviation was selected as a representative method and applied with several safety factors to obtain a suitable safety factor for the design.

Development and CFD Analysis of a New Type Pre-Swirl Duct for 176k Bulk Carrier (176k Bulk Carrier에 대한 신개념 타입의 Pre-Swirl Duct의 개발 및 CFD 해석)

  • Yoo, Gwang Yeol;Kim, Moon Chan;Shin, Yong Jin;Shin, Irok;Kim, Hyun Woong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.373-382
    • /
    • 2019
  • This paper shows numerical results for the estimation of the propulsor efficiency of Pre-Swirl Duct for 176k bulk carrier as well as its design method. Reynolds averaged Navier-Stokes equations have been solved and the k-epsilon model applied for the turbulent closure. The propeller rotating motion is determined using a sliding mesh technique. The design process is divided into each part of Pre-Swirl Duct, duct and Pre-Swirl Stator. The design of duct was performed first because it is located further upstream than Pre-Swirl Stator. The distribution of velocity through the duct was analyzed and applied for the design of Pre-Swirl Stator. The design variables of duct include duct angle, diameter, and chord length. Diameter, chord length, equivalent angle are considered when designing the Pre-Swirl Stator. Furthermore, a variable pitch angle stator is applied for the final model of Pre-Swirl Duct. The largest reduction rate of the delivered power in model scale is 7.6%. Streamlines, axial and tangential velocities under the condition that the Pre-Swirl Duct is installed were reviewed to verify its performance.

Experimental and numerical investigation of closure time during artificial ground freezing with vertical flow

  • Jin, Hyunwoo;Go, Gyu-Hyun;Ryu, Byung Hyun;Lee, Jangguen
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.433-445
    • /
    • 2021
  • Artificial ground freezing (AGF) is a commonly used geotechnical support technique that can be applied in any soil type and has low environmental impact. Experimental and numerical investigations have been conducted to optimize AGF for application in diverse scenarios. Precise simulation of groundwater flow is crucial to improving the reliability these investigations' results. Previous experimental research has mostly considered horizontal seepage flow, which does not allow accurate calculation of the groundwater flow velocity due to spatial variation of the piezometric head. This study adopted vertical seepage flow-which can maintain a constant cross-sectional area-to eliminate the limitations of using horizontal seepage flow. The closure time is a measure of the time taken for an impermeable layer to begin to form, this being the time for a frozen soil-ice wall to start forming adjacent to the freeze pipes; this is of great importance to applied AGF. This study reports verification of the reliability of our experimental apparatus and measurement system using only water, because temperature data could be measured while freezing was observed visually. Subsequent experimental AFG tests with saturated sandy soil were also performed. From the experimental results, a method of estimating closure time is proposed using the inflection point in the thermal conductivity difference between pore water and pore ice. It is expected that this estimation method will be highly applicable in the field. A further parametric study assessed factors influencing the closure time using a two-dimensional coupled thermo-hydraulic numerical analysis model that can simulate the AGF of saturated sandy soil considering groundwater flow. It shows that the closure time is affected by factors such as hydraulic gradient, unfrozen permeability, particle thermal conductivity, and freezing temperature. Among these factors, changes in the unfrozen permeability and particle thermal conductivity have less effect on the formation of frozen soil-ice walls when the freezing temperature is sufficiently low.

Assessment and Monitoring of Structural Damage Using Seismic Wave Interferometry (탄성파 간섭법 탐사를 이용한 건축물 손상 평가 및 모니터링)

  • In Seok Joung;AHyun Cho;Myung Jin Nam
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.144-153
    • /
    • 2024
  • Recent research is increasingly focused on utilizing seismic waves for structure health monitoring (SHM). Specifically, seismic interferometry, a technique applied in geophysical surveys using ambient noise, is widely applied in SHM. This method involves analyzing the response of buildings to propagating seismic waves. This enables the estimation of changes in structural stiffness and the evaluation of the location and presence of damage. Analysis of seismic interferometry applied to SHM, along with case studies, indicates its highly effective application for assessing structural stability and monitoring building conditions. Seismic interferometry is thus recognized as an efficient approach for evaluating building integrity and damage detection in SHM and monitoring applications.

Velocity Model Building using Waveform Inversion from Single Channel Engineering Seismic Survey (탄성파 파형역산을 이용한 엔지니어링 목적의 단일채널 탄성파 탐사자료에서의 속도모델 도출)

  • Choi, Yeon Jin;Shin, Sung Ryul;Ha, Ji Ho;Chung, Woo Keen;Kim, Won Sik
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.4
    • /
    • pp.231-241
    • /
    • 2014
  • Recently, single channel seismic survey for engineering purpose have been used widely taking advantage of simple processing. However it is very difficult to obtain high fidelity subsurface image by single channel seismic due to insufficient fold coverage. Recently, seismic waveform inversion in multi channel seismic survey is utilized for accurate subsurface imaging even in complex terrains. In this paper, we propose the seismic waveform inversion algorithm for velocity model building using a single channel seismic data. We utilize the Gauss-Newton method and assume that subsurface model is 1-Dimensional. Seismic source estimation technique is used and offset effect is also corrected by removing delay time by offset. Proposed algorithm is verified by applying modified Marmousi2 model, and applied to field data set obtained in port of Busan.