• Title/Summary/Keyword: Vehicular Mobile Networks

Search Result 52, Processing Time 0.031 seconds

Vehicular Cyber-Physical Systems for Smart Road Networks

  • Jeong, Jaehoon Paul;Lee, Eunseok
    • Information and Communications Magazine
    • /
    • v.31 no.3
    • /
    • pp.103-116
    • /
    • 2014
  • This paper proposes the design of Vehicular Cyber-Physical Systems (called VCPS) based on vehicular cloud for smart road networks. Our VCPS realizes mobile cloud computing services where vehicles themselves or mobile devices (e.g., smartphones and tablets of drivers or passengers in vehicles) play a role of both cloud server and cloud client in the vehicular cloud. First, this paper describes the architecture of vehicular networks for VCPS and the delay modeling for the event prediction and data delivery, such as a mobile node's travel delay along its navigation path and the packet delivery delay in vehicular networks. Second, the paper explains two VCPS applications as smart road services for the driving efficiency and safety through the vehicular cloud, such as interactive navigation and pedestrian protection. Last, the paper discusses further research issues for VCPS for smart road networks.

A Sensing Data Collection Strategy in Software-Defined Mobile-Edge Vehicular Networks (SDMEVN) (소프트웨어 정의 모바일 에지 차량 네트워크(SDMEVN)의 센싱 데이터 수집 전략)

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.62-65
    • /
    • 2018
  • This paper comes out with the study on sensing data collection strategy in a Software-Defined Mobile Edge vehicular networking. The two cooperative data dissemination are Direct Vehicular cloud mode and edge cell trajectory prediction decision mode. In direct vehicular cloud, the vehicle observe its neighboring vehicles and sets up vehicular cloud for cooperative sensing data collection, the data collection output can be transmitted from vehicles participating in the cooperative sensing data collection computation to the vehicle on which the sensing data collection request originate through V2V communication. The vehicle on which computation originate will reassemble the computation out-put and send to the closest RSU. The SDMEVN (Software Defined Mobile Edge Vehicular Network) Controller determines how much effort the sensing data collection request requires and calculates the number of RSUs required to support coverage of one RSU to the other. We set up a simulation scenario based on realistic traffic and communication features and demonstrate the scalability of the proposed solution.

  • PDF

A Handover Mechanism Between Local Mobility Anchors in Proxy Mobile IPv6-based Vehicular Communication Networks (Proxy Mobile IPv6 기반 차량통신망에서 Local Mobility Anchor간 핸드오버 기법)

  • Lim, Yu-Jin;Ahn, Sang-Hyun;Cho, Kwon-Hee
    • The KIPS Transactions:PartC
    • /
    • v.17C no.3
    • /
    • pp.243-250
    • /
    • 2010
  • Vehicular communication networking is one of the most important building blocks of Intelligent Transportation System (ITS). The vehicular communication network is a wireless communication system enabling vehicles to communicate with each other as well as with roadside base stations. Mobility management of vehicles which move at high speeds and occasionally make a long journey is an interesting research area of vehicular communication networks. Recently, The Proxy Mobile IPv6 (PMIPv6) protocol is proposed for network-based mobility management to reduce the overhead of mobile nodes. PMIPv6 shifts the burden of the mobility management from mobile nodes to network agents to decrease the overhead and latency for the mobility management. In this paper, we derive the scenario of deploying PMIPv6 in vehicular communication networks and propose a new LMA handover mechanism for realizing the scenario. By carrying out the ns-2 based simulations, we verify the operability of the proposed mechanism.

Collision Avoidance Method Based-on Directional Antenna in Vehicular Ad Hoc Networks (Vehicular Ad Hoc Networks에서 방향성 안테나기반 충돌 회피 기법)

  • Kim, Kyung-Jun
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.6
    • /
    • pp.627-633
    • /
    • 2008
  • In the case of traffic accidents, the broadcasting methods used in the mobile ad hoc network (MANET) cannot applied to transmit reliable message since moving high-speed in vehicular ad hoc networks (VANET) environments. In this paper, in order to guarantee transmitting reliable messages, we propose a collision avoidance method based-on directional antenna in VANET. In order to reduce interference from omni-broadcasting and to avoid hidden node problem from moving high-speed, we employed a forward-handed and backward directional antenna. The authors simulated the proposed method based on directional antenna and showed that the proposed method has been improved in respect to network utilization compared to existing VANET protocols.

  • PDF

Secure Cluster Selection in Autonomous Vehicular Networks

  • Mohammed, Alkhathami
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • Vehicular networks are part of the next generation wireless and smart Intelligent Transportation Systems (ITS). In the future, autonomous vehicles will be an integral part of ITS and will provide safe and reliable traveling features to the users. The reliability and security of data transmission in vehicular networks has been a challenging task. To manage data transmission in vehicular networks, road networks are divided into clusters and a cluster head is selected to handle the data. The selection of cluster heads is a challenge as vehicles are mobile and their connectivity is dynamically changing. In this paper, a novel secure cluster head selection algorithm is proposed for secure and reliable data sharing. The idea is to use the secrecy rate of each vehicle in the cluster and adaptively select the most secure vehicle as the cluster head. Simulation results show that the proposed scheme improves the reliability and security of the transmission significantly.

BL-CAST:Beacon-Less Broadcast Protocol for Vehicular Ad Hoc Networks

  • Khan, Ajmal;Cho, You-Ze
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1223-1236
    • /
    • 2014
  • With the extension of wireless technology, vehicular ad hoc networks provide important services for the dissemination of general data and emergency warnings. However, since, the vehicle topology frequently changes from a dense to a sparse network depending on the speed of the moving vehicles and the time of day, vehicular ad hoc networks require a protocol that can facilitate the efficient and reliable dissemination of emergency messages in a highly mobile environment under dense or intermittent vehicular connectivity. Therefore, this paper proposes a new vehicular broadcast protocol, called BL-CAST, that can operate effectively in both dense and sparse network scenarios. As a low overhead multi-hop broadcast protocol, BL-CAST does not rely on the periodic exchange of beacons for updating location information. Instead, the location information of a vehicle is included in a broadcast message to identify the last rebroadcasting vehicle in an intermittently connected network. Simulation results show that BL-CAST outperforms the DV-CAST protocol in terms of the end-to-end delay, message delivery ratio and network overhead.

Efficient IP Mobility Management Scheme in Vehicular Networks (차량 통신망에서 성능 효율적인 IP 이동성 관리 기법)

  • Jeon, Jae-Sung;Hong, Kun-Ho;Lee, Su-Kyoung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.698-701
    • /
    • 2010
  • Recently, Vehicular Networks is being developed to provide variety of services such as email, ftp, and video streaming services. As IP mobility technology, Proxy Mobile IP is developed to provide these services for a VANET user. By adopting Proxy Mobile IPv6 (PMIPv6), Vehicular Networks can support IP mobility, but it may cause a proxy binding update (PBU) message when a vehicle moves from one MAG to another. In addition, if the density of vehicles on the road is high, significant PBU messages are generated. In this paper, we propose bulk PBU message to reduce signaling overhead by those PBU messages when a bunch of vehicles move from one MAG to another. When the vehicles move from one MAG to another, it generates only one bulk PBU message to update those vehicle's location. Through numerical and simulation results, we show that our proposed bulk registration reduces signaling overhead when the density of vehicles and the speed of them are high.

Density-Based Opportunistic Broadcasting Protocol for Emergency Situations in V2X Networks

  • Park, Hyunhee;Singh, Kamal Deep;Piamrat, Kandaraj
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.1
    • /
    • pp.26-32
    • /
    • 2014
  • Vehicular-to-anything (V2X) technology is attractive for wireless vehicular ad-hoc networks (VANETs) because it allows for opportunistic choice of a vehicular protocol between vehicular-to-vehicular (V2V) and vehicular-to-infrastructure (V2I) communications. In particular, achieving seamless connectivity in a VANET with nearby network infrastructure is challenging. In this paper, we propose a density-based opportunistic broadcasting (DOB) protocol, in which opportunistic connectivity is carried out by using the nearby infrastructure and opposite vehicles for solving the problems of disconnection and long end-to-end delay times. The performance evaluation results indicate that the proposed DOB protocol outperforms the considered comparative conventional schemes, i.e., the shortest path protocol and standard mobile WiMAX, in terms of the average end-to-end delay, packet delivery ratio, handover latency, and number of lost packets.

Machine-to-Machine (M2M) Communications in Vehicular Networks

  • Booysen, M.J.;Gilmore, J.S.;Zeadally, S.;Rooyen, G.J. Van
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.529-546
    • /
    • 2012
  • To address the need for autonomous control of remote and distributed mobile systems, Machine-to-Machine (M2M) communications are rapidly gaining attention from both academia and industry. M2M communications have recently been deployed in smart grid, home networking, health care, and vehicular networking environments. This paper focuses on M2M communications in the vehicular networking context and investigates areas where M2M principles can improve vehicular networking. Since connected vehicles are essentially a network of machines that are communicating, preferably autonomously, vehicular networks can benefit a lot from M2M communications support. The M2M paradigm enhances vehicular networking by supporting large-scale deployment of devices, cross-platform networking, autonomous monitoring and control, visualization of the system and measurements, and security. We also present some of the challenges that still need to be addressed to fully enable M2M support in the vehicular networking environment. Of these, component standardization and data security management are considered to be the most significant challenges.

A Distance and Angle Based Routing Algorithm for Vehicular Ad hoc Networks

  • Wang, Jing;Rhee, Kyung-Hyune
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.190-192
    • /
    • 2012
  • Vehicular Ad hoc Networks (VANETs) is the new wireless networking concept of mobile ad hoc networks in research community. Routing in vehicular is a major challenge and research area. The majority of current routing algorithms for VANETs utilize indirect metrics to select the next hop and produce optimal node path. In this paper, we propose a distance and angle based routing algorithm for VANETs, which combines a distance approach with an angle based geographical strategy for selecting the next hop, with the purpose of using direct metrics to build a optimal node route. The proposed algorithm has better performance than the previous scheme.

  • PDF