• Title/Summary/Keyword: Vehicle-to-Home

Search Result 132, Processing Time 0.03 seconds

Suggestion of A Practical Simple Calculation Method for Safe Transportation Time after Radioactive Iodine Treatment in Patients with Thyroid Cancer (갑상선암 환자에서 방사성옥소치료 후 안전하게 이동할 수 있는 시간을 계산하기 위한 실용적인 간편계산법 제안)

  • Park, Seok-Gun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3919-3925
    • /
    • 2015
  • When a patient with thyroid cancer is released from isolation after I-131 treatment and return to home using a vehicle, travel time should be controlled to reduce the amount of radiation to accompanying person. As the calculation of appropriate travel time is difficult, there is no patient-specific guideline until now. If we assume that there is no excretion and no physical decay during the relatively short travel time, calculation become quite simple; total radiation dose = dose rate ${\times}$ travel time. Results of this simple calculation and conventional calculation were compared using datum from 120 patients. Travel time calculated by simple method was 56% of conventional method in 0.3 m, 91% in 0.5 m and 96% in 1 m. Simple method was safe. It can be applied easily and also can be applied to the patients with hyperthyroidism treated by I-131.

Simulation for Injection Molding of Insulation Spacers for Gas-Insulated Switches Using Thermosetting Epoxy Resin (열경화성 에폭시를 이용한 가스 절연 개폐기용 절연 스페이서의 사출 성형 최적화 시뮬레이션)

  • Bae, Jaesung;Lee, Wonchang;Jee, Hongsub;Hong, Byungyou;Lee, Jaehyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.426-432
    • /
    • 2021
  • Injection molding is used in many industrial fields such as home appliances, vehicle parts, and electronic device parts because various resins can be molded, leading to mass production of complex shapes. Generally, the empirical prediction method is used to set the initial processing conditions of injection molding. However, this approach requires a lot of cost and its presented solution is not accurate. In this paper, injection molding was simulated through the MoldflowTM in order to manufacture the spacer for gas insulated switch. Through the simulation, the flow of the resin with respect to the diameter of the inlet was analyzed. It was found that the process was possible at a higher resin temperature as the diameter of the inlet increased. In addition, through thermal analysis during injection of the resin, it was confirmed that a stagnation phenomenon occurred at the insert portion during injection molding, and the temperature of the resin was higher than that of the mold. As in this paper, if the spacer is manufactured by optimizing the injection hole and the temperature of the injection process based on simulation, it is expected that the spacer can be manufactured with high productivity.

A Study on the Emissions Characteristics of a LPG Vehicle According to Various Test Modes and Ambient Conditions (다양한 시험모드와 환경조건에 따른 LPG 차량의 배출특성 연구)

  • Lee, Min-Ho;Ha, Jong-Han
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • As the interest on the air pollution is gradually rising up at home and abroad, automotive and fuel researchers have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward various main issues : whether PM emissions should be regulated for diesel and gasoline vehicles and whether gasoline and LPG powered vehicles can be further neglected from PM emission inventories. Finally, the greenhouse gas regulation has been discussed including automotive emission regulation. The greenhouse gas and emissions of automotive had many problem that cause of ambient pollution, health effects. Based on various test modes and ambient conditions, this paper discusses the characteristics of LPG on exhaust emissions and greenhouse gases. Also, this paper assessed emission characteristics due to the test temperature. These test temperature were performed by dividing the temperature of the test mode and the lowest local temperature in winter. Through this study, the correlation of vehicle test mode and ambient condition, exhaust emission, greenhouse gas emission was analyzed.

An Analysis of Effects of Travel Speed Using the Safety Facilities in the School Zones (어린이 보호구역내 교통안전시설이 구간통행속도에 미치는 효과 분석)

  • Lee, Ho-Won;Joo, Doo-Hwan;Hyun, Cheol-Seung;Kim, Dong-Hyo;Park, Boo-Hee;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.3
    • /
    • pp.124-132
    • /
    • 2012
  • There is high probability of children's traffic accidents. Because their physical, mental attribute are weak. Major part of the accidents happen during walking. Above all, jaywalking is the biggest traffic accident reason. Many traffic accidents take place on the road to school or near the home area. So Ministry of Public Administration and Security legislated children safeguard zone since 1995. But a study are inadequate the safety facilities on the effectiveness verification in the school zone. Therefore, this study aims to analyze the effectiveness of safety facilities. The vehicle speed is a direct correlation traffic accident. So in this study, the MOE(Measure of Effectiveness) is average travel speed in the school zone. The results shows that hump, rised pedestrian crossing has an effect.

A study on the characteristics of fuel performance according to the oxygenated additive type for gasoline fuel Part 1. Fuel properties and evaporative emission characteristics (휘발유 연료용 함산소 첨가제 종류에 따른 성능 특성 연구 Part 1. 연료물성 및 증발가스 배출 특성)

  • Lee, Min-Ho;Kim, Jong-Ryeol;Kim, Ki-Ho;Ha, Jong-Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.118-128
    • /
    • 2016
  • As the interest on the air-pollution is gradually rising up at home and abroad, automotive and fuel researchers have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward two main issues : exhaust emission and PM (particulate matter) particle emissions of gasoline vehicle. Exhaust emission and PM particle of automotive had many problem that cause of ambient pollution, health effects. In addition, researcher studied the environment problems of the MTBE contained in the fuel as oxygenate additives. The researchers have many data about the health effects of ingestion of MTBE. However, the data support the conclusion that MTBE is a potential human carcinogen at high doses. Based on the oxygenated fuel additive types (MTBE, Bio-ETBE, Bio-ethanol, Bio-butanol), this paper discussed the influence of oxygen contents on gasoline fuel properties and evaporative emission characteristics. Also, this paper assessed the acceleration and power performance of gasoline vehicle for the fuel property.

Development Status and Study of the Sounding Rocket (국내외 Sounding Rocket 개발현황 및 발전방향)

  • Kim, Jin-Yong;Rho, Tae-Ho;Lee, Won-Bok;Suh, Hyuk;Rhee, Young-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.466-475
    • /
    • 2011
  • This paper presents development status of sounding rockets containing scientific payload and telemetry at home and abroad. The case of outside, United States is launching sounding rockets in 20-30 flights per year by the NASA program which offers to carry payload weights of 38-680 kg and altitude of 88-1500 km. Europe is launching in 4-5 flights per year by the ESA program. The case of Korean sounding rockets was successful with the launch of three times(KSR-I,II,III), but Korea lags far behind the advanced countries in the field of development technologies for space launch vehicle. We expect that our scientific and industrial technologies will be improved through the research and development of sounding rockets. In this study we proposed necessity and future direction of development in domestic sounding rockets.

  • PDF

Development Status and Study of the Sounding Rocket (국내외 Sounding Rocket 개발현황 및 발전방향)

  • Kim, Jin-Yong;Rho, Tae-Ho;Lee, Won-Bok;Suh, Hyuk;Rhee, Young-Woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.70-79
    • /
    • 2011
  • This paper presents development status of sounding rockets containing scientific payload and telemetry at home and abroad. The case of outside, United States is launching sounding rockets in 20-30 flights per year by the NASA program which offers to carry payload weights of 38-680 kg and altitude of 88-1500 km. Europe is launching in 4-5 flights per year by the ESA program. The case of Korean sounding rockets was successful with the launch of three times(KSR-I,II,III), but Korea lags far behind the advanced countries in the field of development technologies for space launch vehicle. We expect that our scientific and industrial technologies will be improved through the research and development of sounding rockets. In this study we proposed necessity and future direction of development in domestic sounding rockets.

A study on the emission characteristics of greenhouse gases according to the vehicle technology, fuel oil type and test mode (차량기술, 연료 유종 및 시험모드 특성에 따른 온실가스의 배출특성 연구)

  • Lee, Jung-Cheon;Lee, Min-Ho;Kim, Ki-Ho;Park, An-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.962-973
    • /
    • 2017
  • Concerns about an air pollution are gradually increasing at home and abroad. The automotive and fuel researchers are trying to reduce emissions and greenhouse gases of vehicles through a research on new engine designs and innovative after-treatment systems using clean fuels (eco-alternative fuel) and fuel quality improvements. In this paper, we stduy the emission characteristics of greenhouse gases on seven vehicles using gasoline, diesel, and LPG by legal test mode in domestic and abroad.(Urban mode, Highway mode, rapidly acceleration and deceleration, using air conditioner, low temperature condition) Regardless of fuels, most of the greenhouse gases tend to show the worst results in cold FTP-75 mode. In the case of A vehicles (2.0 MPI) and B vehicles (2.4 GDI) using a gasoline fuel, the factors that increase greenhouse gases are in order of a rapidly acceleration and deceleration, using air conditioner, low temperature condition. But G vehicles(LPLi) have different emission characteristics from another vehicles. In the case of A vehicles (2.0 w/o DPF) and B vehicles (2.2 with DPF) using a diesel fuel, the factors that increase greenhouse gases are in order of a rapidly acceleration and deceleration, using air conditioner, low temperature condition. However, the factor of F vehicles are in order of low temperature condition, using air conditioner, rapidly acceleration and deceleration. In conclusion, it will be an effective method to apply different technologies of emission reduction for each fuel.

The Characteristics Study of Vehicle Evaporative Emission and Performance according to the Bio-Fuel Application (바이오 연료 적용에 따른 차량 증발가스 및 성능특성 연구)

  • Noh, Kyeong-Ha;Lee, Min-Ho;Kim, Ki-Ho;Kim, Sin;Park, Cheon-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.874-882
    • /
    • 2017
  • As the interest on the air-pollution is gradually rising up at home and abroad, automotiv e and fuel researchers have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward three main issues : evaporative, performance, air pollution. In addition, researcher studied the environment problems of the bio-ethanol, bio-butanol, bio-ETBE (Ethyl Tertiary Butyl Ether), MTBE (Methyl Tert iary Butyl Ether) fuel contained in the fuel as octane number improver. The researchers have many dat a about the health effects of ingestion of octane number improver. However, the data support the con clusion that octane number improver is a potential human carcinogen at high doses. Based on the bio-fuel and octane number improver types (bio-ethanol, bio-butanol, bio-ETBE, MTBE), this paper dis cussed the influence of gasoline fuel properties on the evaporative emission characteristics. Also, this p aper assessed the acceleration and power performance of gasoline vehicle for the bio-fuel property. As a result of the experiment, it was found that all the test fuels meet the domestic exhaust gas standards, and as a result of measurement of the vapor pressure of the test fuels, the bio - ethanol : 15 kPa and the biobutanol : 1.6 kPa. thus when manufacturing E3 fuel, Increasing the biobutanol content reduces evaporation gas and vapor pressure. In addition, Similar accelerating and powering performance was shown for the type of biofuel and when bio-butanol and bio-ethanol were compared accelerated perf ormance was improved by about 3.9% and vehicle power by 0.8%.

Optical Design of an Inspection Apparatus for Dynamic Visual Acuity (동체시력 검사기의 광학계 설계)

  • Lee, Dong-Hee;Kim, Hye-Dong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.2
    • /
    • pp.473-480
    • /
    • 2004
  • Recently, they are interested in the relation between night's vehicle accidents of drivers and the dynamic visual acuity at home and aboard. So, in this research, we tried to design an optical system of the inspection equipment to measure the dynamic visual acuity. A optotype standard did to Landolt's ring with 45mm of diameter and 9mm of gap to maintain the visual acuity of 1.0 in the 30m distance. An optical structure of the inspection equipment was composed of the sequence of an observer, a plus refraction lens system, a minus refraction lens system, and an optotype that was arranged to have characteristics that the size of the first virtual image of the optotype made by the minus refraction lens system grows bigger gradually according to the optotype movement to near distance from far distance, and also the first virtual image moves to the principle plane from the focal point of the plus refraction lens system as the size of the first virtual image arranged to the inside of focal distance of plus refraction lens system grows bigger gradually. As doing these processes, we completed the optical system of which characteristic is that the position of the final second virtual image moves to 3m from 50m as the size of the second virtual image made by the plus refraction lens system maintains to be regular.

  • PDF