• Title/Summary/Keyword: Vehicle stability

Search Result 1,061, Processing Time 0.028 seconds

Development of the Wide Passenger Door System of EMU based on the High Precision Stop Performance (정위치 정차 성능 기반 전동차 광폭 출입문 시스템 개발 연구)

  • Kim, Moosun;Hong, Jae-Sung;Kim, Jungtai;Jang, Dong Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.618-624
    • /
    • 2017
  • In Seoul and most metropolitan cities, urban trains are delayed due to high congestion during commute times. The delay effect of passengers boarding and disembarking is also significant. In this study, a wide passenger door system was developed as a way to improve the scheduled speed of urban trains by decreasing the passengers' flow time. The door size was defined experimentally to shorten the entrance time. The optimum door size was also determined to improve the stop precision performance of the train while considering the interference effect with peripheral devices. Because the change in door size changes the structural characteristics of the vehicle, the structural stability of a train was analyzed numerically. A prototype of the wide door system was made, and the proposed design was verified using functional and endurance tests. The systematic development process can be used as design data for door size definition and system production when applying a wide door to improve the scheduled speed.

A Study on Environmental Assessment of Bikeway based on ANP Model for Sustainable Green Road (지속가능 녹색 도로 조성을 위한 ANP 모델 기반 자전거도로 환경 평가 방안)

  • Lee, Ji Hwan;Joo, Yong Jin;Park, Soo Hong
    • Spatial Information Research
    • /
    • v.20 no.6
    • /
    • pp.33-43
    • /
    • 2012
  • As part of recent sustainable transport, bike has come into the spotlight as a green transport at close range to link between walking and public transit and also alterative to solve problems of existing vehicle travel. Some arguments on promotion of using bicycles have already been made in Europe, the U.S and other developed countries. To be sure, much has been written extensively in description of utilization of bike oriented by supplier, for examples, Level of Service with bike path, infrastructure such as bicycle racks and lounge etc. Therefore, our study has been differentiated in development of new evaluation model focused on level of bike user's satisfaction, comprehensively considering suitability for bikeway installation, connectivity of the public transportation system and stability in Incheon City. ANP(Analytic Network Process) analysis which is able to allow consideration of the interdependence of criteria has been hired due to multi-collinearity instead of AHP used in multi-criteria decision analysis. Last but not least, we drew bike route on a case-by-case for maintenance and improvement of its facility in Namdong-gu and Bupyeong-gu. To conclude, suggested finding has dem onstrated the validity of evaluation scheme for bikeways which is appropriate for type and purpose and ultimately this can be used to establish policy decision making for improvement of bikeway.

The Technique of Human tracking using ultrasonic sensor for Human Tracking of Cooperation robot based Mobile Platform (모바일 플랫폼 기반 협동로봇의 사용자 추종을 위한 초음파 센서 활용 기법)

  • Yum, Seung-Ho;Eom, Su-Hong;Lee, Eung-Hyuk
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.638-648
    • /
    • 2020
  • Currently, the method of user-follwoing in intelligent cooperative robots usually based in vision system and using Lidar is common and have excellent performance. But in the closed space of Corona 19, which spread worldwide in 2020, robots for cooperation with medical staff were insignificant. This is because Medical staff are all wearing protective clothing to prevent virus infection, which is not easy to apply with existing research techniques. Therefore, in order to solve these problems in this paper, the ultrasonic sensor is separated from the transmitting and receiving parts, and based on this, this paper propose that estimating the user's position and can actively follow and cooperate with people. However, the ultrasonic sensors were partially applied by improving the Median filter in order to reduce the error caused by the short circuit in communication between hard reflection and the number of light reflections, and the operation technology was improved by applying the curvature trajectory for smooth operation in a small area. Median filter reduced the error of degree and distance by 70%, vehicle running stability was verified through the training course such as 'S' and '8' in the result.

Nanoemulsions: a Novel Vehicle for Cosmetics (나노에멀젼: 화장품을 위한 새로운 제형)

  • Cho, Wan-Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-21
    • /
    • 2011
  • This review describes several kinds of emulsification methods for nanoemulsions and the application of nanoemulsions. Nanoemulsion droplet sizes fall typically in the range of 20 ~200 nm and show narrow size distributions. Although most of the publications on either oil-in-water (O/W) or water-in-oil (W/O) nanoemulsions have reported their formation by dispersion or high-energy emulsification methods, an increased interest is observed in the study of nano-emulsion formation by condensation or low-energy emulsification methods based on the phase transitions that take place during the emulsification process. Phase behaviour studies have shown that the size of the droplets is governed by the surfactant phase structure (bicontinuous microemulsion or lamellar) at the inversion point induced by either temperature or composition. Studies on nanoemulsion formation by the phase inversion temperature (PIT) method have shown a relation between minimum droplet size and complete solubilization of the oil in a microemulsion bicontinuous phase independently of whether the initial phase equilibrium is single or multiphase. Due to their small droplet size nanoemulsions possess stability against sedimentation or creaming with Ostwald ripening forming the main mechanism of nanoemulsion breakdown. An application of nanoemulsions is the preparation of nanoparticles using a polymerizable monomer as the disperse phase where nanoemulsion droplets act as nanoreactors, cosmetics and controlled drug delivery. In this review, we mainly focus on the cosmetics.

Drone-Based Micro-SAR Imaging System and Performance Analysis through Error Corrections (드론을 활용한 초소형 SAR 영상 구현 및 품질 보상 분석)

  • Lee, Kee-Woong;Kim, Bum-Seung;Moon, Min-Jung;Song, Jung-Hwan;Lee, Woo-Kyung;Song, Yong-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.854-864
    • /
    • 2016
  • The use of small drone platform has become a popular topic in these days but its application for SAR operation has been little known due to the burden of the payload implementation. Drone platforms are distinguished from the conventional UAV system by the increased vulnerability to the turbulences, control-errors and poor motion stability. Consequently, sophisticated motion compensation may be required to guarantee the successful acquisition of high quality SAR imagery. Extremely limited power and mass budgets may prevent the use of additional hardwares for motion compensation and the difficulty of SAR focusing is further aggravated. In this paper, we have carried out a feasibility study of mico-SAR drone operation. We present the image acquisition results from the preliminary flight tests and a quality assessment is followed on the experimental SAR images. The in-flight motion errors derived from the unique drone movements are investigated and attempts have been made to compensate for the geometrical and phase errors caused by motions against the nominal trajectory. Finally, the successful operation of drone SAR system is validated through the focussed SAR images taken over test sites.

Engineering Characteristics of Liquid Filler Using Marine Clay and In-situ Soil (해양점토와 현장토를 활용한 유동성 채움재의 공학적 특성)

  • Oh, Sewook;Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.9
    • /
    • pp.25-32
    • /
    • 2020
  • The underground utilities installed under the ground is an important civil engineering structure, such as water supply and sewerage pipes, underground power lines, various communication lines, and city gas pipes. Such underground utilities can be exposed to risk due to external factors such as concentrated rainfall and vehicle load, and it is important to select and construct an appropriate backfill material. Currently, a method mainly used is to fill the soil around the underground utilities and compact it. But it is difficult to compact the lower part of the buried pipe and the compaction efficiency decreases, reducing the stability of the underground utilities and causing various damages. In addition, there are disadvantages such as a decrease in ground strength due to disturbance of the ground, a complicated construction process, and construction costs increase because the construction period becomes longer, and civil complaints due to traffic restrictions. One way to solve this problem is to use a liquid filler. The liquid filler has advantages such as self-leveling ability, self-compaction, fluidity, artificial strength control, and low strength that can be re-excavated for maintenance. In this study, uniaxial compression strength test and fluidity test were performed to characterize the mixed soil using marine clay, stabilizer, and in-situ soil as backfill material. A freezing-thawing test was performed to understand the strength characteristics of the liquid filler by freezing, and in order to examine the effect of the filling materials on the corrosion of the underground pipe, an electrical resistivity test and a pH test were performed.

Electrode bonding method and characteristic of high density rechargeable battery using induction heating system (유도 가열 접합 시스템을 이용한 대용량 이차전지 전극의 접합 방법 및 특성)

  • Kim, Eun-Min;Kim, Shin-Hyo;Hong, Won-Hee;Cho, Dae-Kweon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.688-697
    • /
    • 2014
  • In this study, electrode bonding technology needed for high density of rechargeable battery is studied, which is recently researched for electric vehicle, the small leisure vessel. For the alternative overcoming the limit of stacking amount able to be stacked by conventional ultrasonic welding, the low temperature bonding method, eligible for minimum of degeneration of chemical activator on the electrode surface which is generated by thermal effect as well as the increase of conductivity and tension strength caused by electrode bonding using filler metal, not using conventional direct heating on the electrode material method, is studied. Specifically to say, recently used more generally the ultrasonic welding and spot welding method are not usable for satisfying stable electric conductivity and bonding strength when much electrode is stacking bonded. If the electrical power is unreasonably increased for the welding, due to the effect of welding temperature, deformation of electrode and activating material degeneration are caused, and after the last packaging, decline of electrical output and generating heat cause to reduce stability of battery. Therefore, in this study, induction heating system bonding method using high frequency heating and differentiated electrode method using filler metal pre-treatment of hot dipping are introduced.

Synthesis of C9-Alcohol through C9-Aldehyde Hydrogenation over Copper Catalysts (구리 촉매 상에서 C9-알데히드의 수소화 반응에 의한 C9-알코올 합성)

  • Park, Young-Kwon;Noh, Sang Gyun;Cho, Kyu Sang;Jeon, Jong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.363-368
    • /
    • 2006
  • This study selected the optimal catalyst for the process of producing $C_9$-alcohol by hydrogenating $C_9$-aldehyde, and carried out an experiment in order to establish the operating condition for maximizing the yield of $C_9$-alcohol. The BET surface area and the specific area of copper were most excellent in $CuO/ZnO/Al_2O_3$ (60:30:10 wt%) catalyst produced using acetate as a precursor of copper and $Na_2CO_3$ as a precipitant, and the catalyst also showed the highest performance in $C_9$-aldehyde hydrogenation. Using a trickle bed reactor loaded with optimized catalyst, we attained 94.1 wt% yield of $C_9$-alcohol under the condition of $175^{\circ}C$, 800 psi and $WHSV=3hr^{-1}$. According to the result of comparing with other catalysts used in the hydrogenation of aldehyde, the catalyst showed similar performance to that of Ni/kieselghur and higher than that of $Cu-Ni-Cr-Na/Al_2O_3$ and $Ni-Mo/Al_2O_3$. According to the result of examining the stability of the catalyst through a long-term catalysis test, the yield of $C_9$-alcohol decreased slowly after around 72 hours due to the increasing production of high boiling-point byproducts.

A Study of Improving Fuel Droplet Movement with Sonic Wave Radiation (음파를 이용한 연료 입자 운동성 향상에 관한 연구)

  • Min, Sunki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.608-613
    • /
    • 2019
  • NOx (Nitrogen oxide) in the exhaust gas from vehicle engines is considered one of the most harmful substances in air pollution problems. NOx is made when combustion occurs under high temperature conditions and EGR (exhaust gas recirculation) is normally used to lower the combustion temperature. As the EGR ratio increases, the NOx level becomes low, but a high EGR ratio makes the combustion unstable and causes further air pollution problems, such as CO and unburned hydrocarbon level increase. This study showed that fuel droplets could move more freely by the radiation of sonic wave for the stable combustion. In addition, the engine performance improved with increasing EGR ratio. As a basic study, the effect of sonic wave radiation on the velocity of fuel droplets was studied using CFD software. The results showed that the velocity of small droplets increased more under high frequency sonic wave conditions and the velocity of the large droplets increased at low frequency sonic wave conditions. In addition, an engine analysis model was used to study the effects of the increased combustion stability. These results showed that a 15% increase in EGR ratio in combustion resulted in a 45% decrease in NOx and a 10% increase in thermal efficiency.

Developing Design Guidelines for Rest Area Based on the Traffic Safety (교통안전을 고려한 고속도로 휴게소 설계기준 개발)

  • Lee, Hyun-Suk;Lee, Eui-Eun;Seo, Im-Ki;Park, Je-Jin
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.173-182
    • /
    • 2012
  • Entry and exits of the rest area are sections where designed speed can be rapidly change and also a weak traffic safety section. In addition, two tasks can be performed simultaneously at entry of the rest area, particularly searching for deceleration and parking spaces/parking sides etc. Thus, design criteria is required in order to procure the stability of accessed vehicle. In case of Korea, geometric structure design criteria of entry facilities, such as toll-gate, interchange, junction etc was established. However there are no presence in a detailed standards for geometric structure of the rest area which affiliated road facilities. In this study, Derive problems in regards to the entry of geometric structure of resting areas by utilizing a sight survey and an investigation research of traffic accidents. The survey was targeting 135 general service areas. After Classifying the design section of resting areas' entry as well as derive design elements on each section, a speed measurement by targeting entry of rest areas and car behavior surveys were performed, then each element's minimum standard was derived through the analyses. According to the speeds at the starting/end point of entrance connector road, the minimum length of the entrance connector road is decided as 40m using Slowing-down length formula and based on the driving pattern, the range of the junction setting angle of the entrance connector road is defined as $12^{\circ}{\sim}17^{\circ}$. Suggest improvement plans for existing rest areas that can be applied realistically. This should be corresponded to the standards of entry and exit of developed rest areas.