• Title/Summary/Keyword: Vehicle safety index

Search Result 106, Processing Time 0.024 seconds

Modified $A^*$ - Local Path Planning Method using Directional Velocity Grid Map for Unmanned Ground Vehicle (Modified $A^*$ - 방향별 속도지도를 활용한 무인차량의 지역경로계획)

  • Lee, Young-Il;Lee, Ho-Joo;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.327-334
    • /
    • 2011
  • It is necessary that UGV(Unmanned Ground Vehicle) should generate a real-time travesability index map by analyzing raw terrain information to travel autonomously tough terrain which has various slope and roughness values. In this paper, we propose a local path planning method, $MA^*$(Modified $A^*$) algorithm, using DVGM (Directional Velocity Grid Map) for unmanned ground vehicle. We also present a path optimization algorithm and a path smoothing algorithm which regenerate a pre-planned local path by $MA^*$ algorithm into the reasonable local path considering the mobility of UGV. Field test is conducted with UGV in order to verify the performance of local path planning method using DVGM. The local path planned by $MA^*$ is compared with the result of $A^*$ to verify the safety and optimality of proposed algorithm.

Analysis of Comfort on Transition Curve based on the Measured Data (실측데이터에 의한 완화곡선 승차감 평가)

  • Choi, Il-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3573-3578
    • /
    • 2015
  • Transition curves are located between curve and straight section in railway. These transition curves are vulnerable to the ride comfort of passengers and safety of a vehicle because lateral acceleration, lateral jerk and roll velocity increase as curvature and cant change along the transition curves. In this paper, ride comfort on the transition curve was calculated on the basis of lateral acceleration and roll velocity measurements. The evaluation of ride comfort was conducted according to the methodology specified in European Standard. The distribution characteristics of the comfort index were investigated for the korean conventional line from the evaluation results. The influence of the curve radius and the vehicle speed on the ride comfort index was also investigated. Finally, the relationship between ride comfort and the rate of cant changes on transition curves was analyzed.

A Methodology for Evaluating Vehicle Driving Safety based on the Analysis of Interactions With Roads and Adjacent Vehicles (도로 및 인접차량과의 상호작용분석을 통한 차량의 주행안전성 평가기법 개발 연구)

  • PARK, Jaehong;OH, Cheol;YUN, Dukgeun
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.2
    • /
    • pp.116-128
    • /
    • 2017
  • Traffic accidents can be defined as a physical collision event of vehicles occurred instantaneously when drivers do not perceive the surrounding vehicles and roadway environments properly. Therefore, detecting the high potential events that cause traffic accidents with monitoring the interactions among the surroundings continuously by driver is the prerequisite for prevention the traffic accidents. For the analysis, basic data were collected to analyze interactions using a test vehicle which is equipped the GPS(Global Positioning System)-IMU(Inertial Measurement Unit), camera, radar and RiDAR. From the collected data, highway geometric information and the surrounding traffic situation were analyzed and then safety evaluation algorithm for driving vehicle was developed. In order to detect a dangerous event of interaction with surrounding vehicles, locations and speed data of surrounding vehicles acquired from the radar sensor were used. Using the collected data, the tangent and curve section were divided and the driving safety evaluation algorithm which is considered the highway geometric characteristic were developed. This study also proposed an algorithm that can assess the possibility of collision against surrounding vehicles considering the characteristics of geometric road structure. The methodology proposed in this study is expected to be utilized in the fields of autonomous vehicles in the future since this methodology can assess the driving safety using collectible data from vehicle's sensors.

Relationship between Blood Alcohol Concentrations and Breath Alcohol Concentrations of Healthy Korean Males (혈중 알코올 농도와 호흡기 알코올 농도 상관성: 한국인 남성)

  • Yi, SeungHwan;Nam, BeomWoo;Seo, JeongSeok
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.4
    • /
    • pp.9-15
    • /
    • 2015
  • The relationship between BAC(Blood Alcohol Concentrations) and BrACs(Breath Alcohol Concentrations) and also partition ratio of healthy Korean adult males (96 males) are researched in this paper and its dependency is described according to TBW (total body water), BMI (body mass index), BFM (body fat mass), and PBF (percentage of body fat). Among the above four variables, TBW affects significantly to the partition ratio compared to the other variables. The partition ratio of Korean healthy males showed 1,913 (95 % Confidence Interval (C.I.) from 1,889 to 1,937) for the whole time intervals. However, when Q was averaged after 60 minutes later, its values was 2,011 (95 % C.I. from 1,982 to 2,040). Bland-Altman plots showed the compatibility of measurement methods of multi-gas analyzer, and the biases according to the partition ratios (Q=2,100 and Q=1,913) gave -0.0052 % (95 % CI from -0.0059 to -0.0045%) and -0.0004 % (95 % CI from -0.0011 to +0.0003%), respectively.

Analysis of Characteristics of Body Vibrations for Korean High Speed Train (한국형 고속전철의 차체 진동특성 분석)

  • 김영국;박찬경;김석원;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.539-547
    • /
    • 2003
  • The prototype of Korean high speed train(KHST), composed of two power cars, two motorized cais and three trailer cars, has been designed, fabricated and tested. In this paper. the body vibration has been reviewed from the viewpoint of the vehicle's safety, the ride comfort and the vibration limits for components and sub-assemblies mounted on the car-body using by analytical method and experimental method. The on-line test of KHST has been tarried out up to 260 ㎞/h in the KTX line and the results of the on-line test show that KHST has no problems in the vehicle's safety. the comfort ride and the vibration limits at this speed. And the characteristics of body vibrations has been Predicted at 300 ㎞/h and 350 ㎞/h by fitting curve about the measured acceleration signals.

Study for Support Structure of Liftable Car Deck on PCTC (자동차 운반선 이동식 갑판의 Latch 보강 적정설계 연구)

  • Na, Yongmoon;Chae, Wooki
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.60-65
    • /
    • 2013
  • Now days, the demands of new type hull lines and optimum design in relation with the EEDI (Energy Efficiency Design Index) regulation and eco-friendly high efficiency vessel design are mandatory clauses in Euro financial crises era. Therefore, in correlation with the above, we tried to find the optimum results and revealed the alterations of supporting structure for liftable car deck latch on PCTC. Generally, PCTC (Pure Car & Truck Carrier) design has been performed by 2 pillar space model F. E analysis without vehicle loads on liftable car deck to evaluate the structural adaptability. So, we applied mentioned vehicle loads on pillar and side transverse web on model to compare with not applied model and performed the ultimate strength analysis of improved design for the safety evaluation.

  • PDF

Certification Criteria and Safety Assessment for High Altitude Long Endurance Unmanned Aerial Vehicle (장기체공 무인항공기 기술기준 및 안전성 평가 연구)

  • Ko, Joon Soo;Kim, Kyungmok
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.2
    • /
    • pp.7-13
    • /
    • 2016
  • Multi disciplinary approach for aerodynamics, structure, propulsion, and flight control system is necessary to develop High Altitude Long Endurance Unmanned Aerial Vehicles (HALE UAV). Various HALE UAV development trends are surveyed to understand their operational requirements. Separating the UAV Take Off Weight by 150kg, Airworthiness implementation direction for HALE UAV is studied under the current Airworthiness regulations. NATO STANAG 4671 and STANAG 4703 Airworthiness certification criteria are analyzed, and their applicability was proposed for future HALE UAV development. In addition, minimization of the risk for UAV is studied by considering probability of cumulative catastrophic failure for HALE UAV. This Hazard Risk Index can support the future UAV Airworthiness Certification Criteria.

The Effect of Driving Specific Characteristics and Life Stress on Traffic Fafety (운전 상황에서의 개인특성과 생활스트레스가 교통안전에 미치는 영향)

  • Suran Lee ;EunKyoung Chung ;JaeYoung Kwon ;Young Woo Sohn
    • Korean Journal of Culture and Social Issue
    • /
    • v.17 no.3
    • /
    • pp.305-320
    • /
    • 2011
  • The objectives of the present research are twofold. First, this research aims to compare the effect of trait characteristics(sensation seeking, social resistance and type-A behavior) with that of driving specific characteristics(driving anger and type-A driving) on problematic driving behavior. Second, the role of life stress as a mediator in the relationships between general trait characteristics and traffic safety index was examined. 1158 licensed commercial vehicle drivers were surveyed and their accident-related records were obtained in this research. Results showed that driving specific characteristics were significant indicators of traffic safety and life stress mediated the relationships between general trait characteristics and traffic safety index. These findings implicate that understanding drivers' driving specific characteristics and their levels of life stress is important to reduce problematic driving behaviors and enhance traffic safety.

  • PDF

Development of Traffic Safety Monitoring Technique by Detection and Analysis of Hazardous Driving Events in V2X Environment (V2X 환경에서 위험운전이벤트 검지 및 분석을 통한 교통안전 모니터링기법 개발)

  • Jeong, Eunbi;Oh, Cheol;Kang, Kyeongpyo;Kang, Younsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.1-14
    • /
    • 2012
  • Traffic management centers (TMC) collect real-time traffic data from the field and have powerful databases for analysing, recording, and archiving the data. Recent advanced sensor and communication technologies have been widely applied to intelligent transportation systems (ITS). Regarding sensors, various in-vehicle sensors, in addition to global positioning system (GPS) receiver, are capable of providing high resolution data representing vehicle maneuverings. Regarding communication technologies, advanced wireless communication technologies including vehicle-to-vehicle (V2V) and vehicle-to-vehicle infrastructure (V2I), which are generally referred to as V2X, have been widely used for traffic information and operations (references). The V2X environment considers the transportation system as a network in which each element, such as the vehicles, infrastructure, and drivers, communicates and reacts systematically to acquire information without any time and/or place restrictions. This study is motivated by needs of exploiting aforementioned cutting-edge technologies for developing smarter transportation services. The proposed system has been implemented in the field and discussed in this study. The proposed system is expected to be used effectively to support the development of various traffic information control strategies for the purpose of enhancing traffic safety on highways.

Safety Evaluation of Concrete Bridges for Passage of Crane Vehicle Exceeding Weight Limit (제한 중량을 초과하는 기중기 차량 통행에 대한 콘크리트 교량의 안전성 평가)

  • Lee, Sung-Jae;Yu, Sang Seon;Park, Younghwan;Paik, Inyeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.92-101
    • /
    • 2020
  • It is necessary to develop a rational method for evaluating the safety of bridges for the passage of inseparable crane vehicles exceeding the limit weight. In this study, the same method applied to the development of the recently introduced reliability-based highway bridge design code - limit state design method is applied to the calibration of the live load factor for the crane vehicle. Structural analysis was performed on the concrete bridge and the required strengths of the previous design code, the current design code and AASHTO LRFD were compared. When comparing the unfactored live load effect, the live load of the crane was greater than that of the current and previous design code. When comparing the required strength by applying the calibrated live load factor, the previous design code demands the largest strength and the current design code and the crane live load effect yields similar value. The results of safety evaluation of the actual bridges on the candidate route for the crane passage secured the same reliability as the target reliability index required by the design code and the strength of the cross section of the actual bridge is calculated greater than the required strength for the passage of the crane, which confirms the safety for the passage of the crane.