• Title/Summary/Keyword: Vehicle fuel

Search Result 1,510, Processing Time 0.023 seconds

An Empirical Study on the Designed Burst Pressure of Type3 Composite Cylinder (Type3 복합용기 설계 파열압에 관한 실증연구)

  • Kim, ChangJong;Cho, Sung Min;Kim, Eun Jung;Yoon, Kee Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.3
    • /
    • pp.20-26
    • /
    • 2013
  • In this research, an empirical study on the designed burst pressure of Type3 composite cylinder was performed by hydrostatic burst test equipment. The designed burst pressure of Type3 composite cylinders, which are 6.8 liter and 31 MPa of service pressure, was estimated with the analysis using the finite element method. In order to confirm its accuracy, the burst test of small Type3 composite cylinders was perfomed through three times. The burst test equipment can pressurize to 400 MPa. As a result of comparison between the designed burst pressure and actual burst pressure, the difference was less than 4 percentage. With a test result, the analysis accuracy was verified. This technique will be applied to both qualification and inspection for the composite cylinder.

Optimal Design of the Steel Wheel's Disc Hole Using Approximation Function (근사함수를 이용한 스틸휠의 디스크 홀의 최적화)

  • 임오강;유완석;김우현;조재승
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.105-111
    • /
    • 2003
  • Wheel for passenger car support the car weight with tires, and they transmit rolling and braking power into the ground. Whittling away at wheel weight is more effective to boost fuel economy than lighting vehicle body structure. A shape of hole in disk is optimized for minimizing the weight of steel wheel. Pro/ENGINEER program is used for formulating the design model, and ANSYS package is selected for analyzing the design model. It has difficulties to interface these commercial software directly. For Combining both programs, response surface methodology is applied to construct approximation functions for maximum stresses and maximum displacements are obtained by full factorial design of five levels. This steel wheel is modeled in 14-inch diameter of rim, and wide parameter of hole in disk is only selected as design variable for reducing the weight of steel whee. PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm, which used the second-order information in the direction finding problem and uses the active set strategy, is used for solving optimization problems.

Development of Nitrogen Supply System for Launch Complex of KSLV-I (KSLV-I 발사대 질소공급시스템 개발)

  • Cho, Kie-Joo;Ahn, Kyu-Bok;Kim, Mun-Ki;Kang, Sun-Il;Ra, Seung-Ho;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.752-757
    • /
    • 2010
  • For the launch preparation of KSLV-I, gaseous nitrogen with various level of pressure and cryogenic liquid nitrogen are required. Nitrogen Supply System on launch complex has been developed to perform the production of high pressure gaseous nitrogen, the production of gaseous nitrogen with temperature of $273{\pm}2K$ for protection purge of launch vehicle after loading of propellant and the supply of cryogenic liquid nitrogen for cooling of fuel (kerosene) and oxidizer (liquid oxygen). The operational instability of vaporizer mainly caused by its heat transfer characteristics which sensitively depends on the atmospheric conditions was removed by introducing parallel installation of two vaporizer and their switching operation. The developed Nitrogen Supply System carried out its function successfully in preparation of KSLV-I flight tests.

  • PDF

One-Dimension Thermal Modeling of NiMH Battery for Thermal Management of Electric Vehicles (전기 자동차용 니켈수소 배터리 1차원 열전달 모델링)

  • Han, Jaeyoung;Park, Jisoo;Yu, Sangseok;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.227-234
    • /
    • 2014
  • Fuel consumption rates of electric vehicles strongly depend on their battery performance. Because the battery performance is sensitive to the operating temperature, temperature management of the battery ensures its performance and durability. In particular, the temperature distribution among modules in the battery pack affects the cooling characteristics. This study focuses on the thermal modeling of a battery pack to observe the temperature distribution among the modules. The battery model is a prismatic model of 10 NiMH battery modules. The thermal model of the battery consists of heat generation, convective heat transfer through the channel and conduction heat transfer among modules. The heat generation is calculated by the electric resistance heat during the charge/discharge state. The model is used to determine a strategy for proper thermal management in Electric vehicles.

Torque Predictive Control for Dynamic Performance Improvement of Clamping Force in EMB for Railroad Cars (철도 차량용 EMB의 클램핑 포스 과도응답 향상을 위한 토크 예측 제어)

  • Jang, Yoon;Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.174-184
    • /
    • 2017
  • This paper proposes a torque predictive control for dynamic performance improvement of clamping force in electro-mechanical brake (EMB) for railroad cars. In general, pneumatic braking system (PBS) is used for railroad cars. It is sensitive depending on environmental changes and it has increasing idle running time because of slow dynamic response. Additionally, the PBS has low braking efficiency in case braking torque more than standard value is applied to the brake system such as emergency braking. In order to overcome these disadvantages of the PBS, the EMB is used for the railroad cars. The EMB for railroad cars has advantages that increasing the fuel efficiency and design flexibility because it is able to decrease vehicle weight of railroad cars and secure space for design. In this paper, control method for dynamic performance improvement of clamping force in EMB for railroad car is proposed. The effectiveness of the proposed control method is verified by the simulation results.

A Study on the Determining Appropriate Truck and Commodity Types for V2X-based Truck Platooning (V2X 기반 군집주행을 위한 적정 화물차 및 품목 선정 기초연구)

  • Ryu, Seungkyu;Choi, Yoon-Hyuk;Jeong, Harim;Kwon, Bongkyung;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.2
    • /
    • pp.122-134
    • /
    • 2020
  • To improve traffic congestion, reduce fuel consumption, and improve the stability of truck operations, truck platooning, in which several trucks are organized in a single platoon, is being actively researched globally. Compared to the operation of a single truck, the operation of a truck platoon requires more caution before the actual operation because an accident of one vehicle in the platoon can lead to an accident with all the vehicles in the platoon. Therefore, this study examined the types of trucks and cargo suitable for truck platooning to prevent safety accidents. The review showed that a closed-van-type truck is appropriate for truck platooning to prevent falling objects during driving. In the case of cargo types, it is necessary to exclude liquids and dangerous goods defined in related laws from truck platooning.

The Trend of System Level Thermal Management Technology Development for Aero-Vehicles (항공기 시스템 레벨 열관리 기술개발 동향)

  • Kim, Youngjin;Son, Changmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Modern aircraft is facing the increase of power demands and thermal challenges. In accordance with the application of more electric technology and advanced mission requirement, aircraft system requires increase of power generation and it cause increase of internal heat generation. Simultaneously, restrictions have significantly been imposed to the thermal management system. Modern aircraft must maintain low radar observability and infra-red signature. In addition, new composite aircraft skins have reduced the amount of heat that can be rejected to the environment. The combination of these characteristics has increased the challenges faced by thermal management. In order to mitigate the thermal challenges, the concept of system level thermal management should be applied and new modeling and simulation tools need to be developed. To develop and utilize system level thermal management technology, three key points are considered. Firstly, the performance changes of subsystems and components must be assessed at an integrated thermal system. It is because that each subsystem and component interacts with other subsystems or components and it can directly effects on overall system performance. Secondly, system level thermal management requirements and solutions must be evaluated early in conceptual design process as vehicle and propulsion system configuration decisions are being made. Finally, new component level thermal management technologies must focus on reducing heat generation and increasing the availability of heat sinks.

Development of a Series Hybrid Propulsion System for Bimodal Tram (바이모달 트램용 직렬형 하이브리드 추진시스템 개발)

  • Bae, Chang-Han;Lee, Kang-Won;Mok, Jai-Kyun;You, Doo-Young;Bae, Jong-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.494-502
    • /
    • 2011
  • Bimodal tram is designed to run on a dedicated path in automatic mode using a magnetic track system in order to realize a combination of the accessibility of a bus and the constant regularity of a railroad. This paper presents design and test results of the series hybrid propulsion system of the bimodal tram on both test track and public road, which uses CNG (Compressed Natural Gas) engine and Lithium polymer battery pack. This paper describes the real-time data measuring equipment for the series hybrid propulsion system of the bimodal tram. Using this measurement equipment, the performance of the prototype vehicle's driving on test track and public road was verified and the fuel consumption and the efficiency of CNG engine have been investigated.

Evaluation and Analysis of Composition of Shredder Residue from End-of-life Vehicle (폐자동차 차피파쇄잔류물의 組咸에 대한 分析評價硏究)

  • 오종기;이화영;김성규
    • Resources Recycling
    • /
    • v.10 no.4
    • /
    • pp.34-41
    • /
    • 2001
  • A research was performed to evaluate a use of shredder residue to currently dispose of at landfills. Laboratory analyses were conducted to determine especially the fuel characteristics of shredder residue. For this aim, shredder residue was classified by the particle size as well as by the type of material and the content of Cl, S, ash, and calorific value were determined. Due to the chlorinated plastic content of shredder residue, mean concentration of Cl was found to exceed 4wt% except one sample while that of S was ranged from 0.25 to 0.39 wt%. As far as calorific value was concemed, plastic was observed to be more than 10,000 kcal/kg while wood/paper and fiber accounted for approximately 4,000 kcal/kg. Shredder residue was found to contain varying trace amounts of metal elements, including Fe of 6∼8.5 wt%. Hg and Cr(VI) were not detected, however, while Cd was contained as small as 0.0004-0.0009 wt%.

  • PDF

Start and Idle Combustion Characteristics of Hydrogen Engine for the HALE UAV (고고도 무인기용 수소 엔진의 시동성 및 공회전 연소 특성)

  • Kim, Yong-Rae;Choi, Young;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.22-27
    • /
    • 2015
  • Hydrogen features highest energy density per mass and is expected to be desirable as a fuel of HALE(High altitude long endurance) UAV(Unmanned aerial vehicle). A reciprocating internal combustion engine is known to be a reliable and economic power source for this kind of UAV. Therefore, the combination of hydrogen and engine is worth of doing research. Test bench with 2.4L Spark-Ignited engine was prepared for the experiment in which start and combustion characteristics at idle condition were examined in this study. Stable hydrogen supply system and a universal ECU(Engine control unit) were also utilized for the test engine. Equivalence ratio and spark timings at idle operation were investigated and compared to the data of gasoline engine. The results will be a starting point for full-scale research of hydrogen engine for HALE UAV.