DOI QR코드

DOI QR Code

One-Dimension Thermal Modeling of NiMH Battery for Thermal Management of Electric Vehicles

전기 자동차용 니켈수소 배터리 1차원 열전달 모델링

  • Received : 2013.08.28
  • Accepted : 2014.01.15
  • Published : 2014.03.01

Abstract

Fuel consumption rates of electric vehicles strongly depend on their battery performance. Because the battery performance is sensitive to the operating temperature, temperature management of the battery ensures its performance and durability. In particular, the temperature distribution among modules in the battery pack affects the cooling characteristics. This study focuses on the thermal modeling of a battery pack to observe the temperature distribution among the modules. The battery model is a prismatic model of 10 NiMH battery modules. The thermal model of the battery consists of heat generation, convective heat transfer through the channel and conduction heat transfer among modules. The heat generation is calculated by the electric resistance heat during the charge/discharge state. The model is used to determine a strategy for proper thermal management in Electric vehicles.

전기 자동차의 연료 소모량은 배터리 성능에 의존한다. 배터리의 성능은 작동온도에 민감하기 때문에, 배터리 온도 관리는 성능과 내구성을 보장한다. 특히, 배터리 팩에서의 모듈의 온도 분포는 냉각특성에 영향을 미친다. 이 연구는 모듈 사이의 온도 분포를 확인 할 수 있는 배터리 열적 모델링에 초점을 두었다. 본 연구의 배터리 모델은 NiMH 각형 모델이며, 10개의 모듈로 구성되어졌다. 배터리 열 모델은 열 발생, 채널을 통과하는 대류 열 전달 그리고 모듈 사이의 전도 열 전달로 구성되었다. 배터리 내에서 발생되는 열발생 모델은 충/방전 동안의 전기적인 저항열에 의해 계산되어 진다. 모델은 전 하이브리드 자동차의 운전 동안 적절한 열관리의 전략을 결정한다.

Keywords

References

  1. Park, S. J. and Jung, D, H., 2013, "Battery Cell Arrangement and Heat Transfer Fluid Effects on the Parasitic Power Consumption and the Cell Temperature Distribution in a Hybrid Electric Vehicle," Journal of Power Sources, Vol. 227, pp. 191-198. https://doi.org/10.1016/j.jpowsour.2012.11.039
  2. Jang, S.Y, PCT/1020090113521, 11.02, 2009
  3. Pesaran, A. A., 2002, "Battery Thermal Models for Hybrid Vehicle Simulations," Journal of Power Sources, Vol. 110, pp. 377-382. https://doi.org/10.1016/S0378-7753(02)00200-8
  4. Pesaran, A. A., 2003, "Cooling and Preheating of Batteries in Hybrid Electric Vehicles," The 6th ASME-JSME Thermal Engineering Joint Conference, March 16-20.
  5. Pesaran, A. A., 2001, "Battery Thermal Manaagement in EVs and HEVs: Issues and Solutions," Advanced Automotive Battery Conference, February 6-8.
  6. Kim, G. H., 2006, "Battery Thermal Management design modeling," Conference paper, October 23-28.
  7. Lee, J. K., Kim. J. E. and Cha, H. J., 2011, "Experiment and Implementation of NiMH Battery Model for Autonomie Environment," The Transactions of the korean Institute of Electrical Engineers, Vol. 60, No.10 , pp.1875-1880. https://doi.org/10.5370/KIEE.2011.60.10.1875
  8. Park, S. J., 2011, "A Comprehensive Thermal Management System Model for Hybrid Electric Vehicles," Ph.D. Dissertation, University of Michigan.
  9. Benhamin, A., Agar, E., Dennison, C.R. and Kumbur, E.C., 2013, "On the Quantification of Coulombic Efficiency for Vanadium Redox Flow Batteries: Cutoff Voltages vs. State-of-charge Limit," Electrochemistry Communications, Vol. 35, pp. 42-44. https://doi.org/10.1016/j.elecom.2013.07.041
  10. Cengel, Y. A. and Ghajar, A. J., 2012, Heat and Mass transfer : Fundamentals and Applications, McGrawHill, pp. 470-471.
  11. Incropera, F.P., Dewitt, D.P., Bergman, T.L. and Lavine, A.S., 1996, Fundamental of Heat Transfer, Incropera, pp. 420-450.