• 제목/요약/키워드: Vehicle Structures

검색결과 678건 처리시간 0.025초

Effects of traffic characteristics on pavement responses at the road intersection

  • Yang, Qun;Dai, Jingwang
    • Structural Engineering and Mechanics
    • /
    • 제47권4호
    • /
    • pp.531-544
    • /
    • 2013
  • Compared with pavement structures of ordinary road sections, pavement structures in the intersection are exposed to more complex traffic characteristics which may exacerbates pavement distresses such as fatigue-cracking, shoving, shear deformation and rutting. Based on a field survey about traffic characteristics in the intersection conducted in Shanghai China, a three dimensional dynamic finite-element model was developed for evaluating the mechanistic responses in the pavement structures under different traffic characteristics, namely uniform speed, acceleration and deceleration. The results from this study indicated that : (1) traffic characteristics have significant effects on the distributions of the maximum principal strain (MPS) and the maximum shear stress (MSS) at the pavement surface; (2) vehicle acceleration or deceleration substantially impact the MPS and MSS at pavement surface and could increase the magnitude of them by 20 percent to 260 percent; (3) in the vertical direction, with the increase of vehicle deceleration rate, the location of the MPS peak value and the MSS peak value changes from the sub-surface layer to the pavement surface.

카본 세라믹 복합재 디스크의 벤트 구조 최적화를 통한 냉각성능 향상에 관한 연구 (A Study on Improvement of Cooling Performance through Vent Structure Optimization of Carbon Ceramic Composite Disc)

  • 심재훈;신웅희;이중희;전갑배;김병철;곽정후;임동원;현은재;전태형;이재만
    • 자동차안전학회지
    • /
    • 제11권1호
    • /
    • pp.23-29
    • /
    • 2019
  • Recently, use of composite materials has been increasing for body structures and chassis parts in the car industry because of weight reduction effect and excellent mechanical thermal characteristics. However, application of composite materials in brake system is very difficult because it is hard to obtain enough brake performance due to low heat storage capacity of the composite materials. In this paper, we will present new carbon ceramic composite disc with high flow characteristic. To obtain this characteristic, new vent structures were designed by using ARIZ method and substance-field model analysis. The flow effect of these vent structures on the brake performance was verified by pugh matrix and cooling test. The test results show improvement of cooling performance up to $30^{\circ}C$. Finally, These results will improve brake the reliability of the brake performance for the high performance vehicles and electric vehicles.

강 거더교의 수직보강재 응답을 이용한 주행차량의 특성 추정 (Identification of Running Vehicle Properties by Vertical Stiffener Response of Steel Girder Bridge)

  • 이희현;전준창;정민선;경갑수
    • 한국안전학회지
    • /
    • 제27권1호
    • /
    • pp.86-95
    • /
    • 2012
  • The BWIM(Bridge Weigh-In-Motion) is a technology to identify vehicle properties, such as weight, speed, axle spacing and running lane, passing over a bridge by using dynamic response of bridge member. Such information will be used for assessing durability and establishing a maintenance strategy of roadway structures. In this paper, as a first step for developing BWIM system, analytical and experimental studies were conducted in order to verify whether the response of vertical stiffener in steel girder bridge can be used to identify vehicle properties running on the bridge. It was known from this study that such vehicle information could be estimated reasonably by using strain time history curve of a vertical stiffener due to running vehicles. It is because the effect of each axle-load of vehicle appears definitely in the curve. However, as the magnitude of strain of vertical stiffener is effected by running pattern of vehicles, further study is necessary to reduce error when estimating vehicle weight.

Dynamic numerical analysis of single-support modular bridge expansion joints

  • Yuan, Xinzhe;Li, Ruiqi;Wang, Jian'guo;Yuan, Wancheng
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.1-12
    • /
    • 2016
  • Severe fatigue and noise problems of modular bridge expansion joints (MBEJs) are often induced by vehicle loads. However, the dynamic characteristics of single-support MBEJs have yet to be further investigated. To better understand the vibration mechanism of single-support MBEJs under vehicle loads, a 3D finite element model of single-support MBEJ with five center beams is built. Successive vehicle loads are given out and the vertical dynamic responses of each center beams are analyzed under the successive loads. Dynamic amplification factors (DAFs) are also calculated along with increasing vehicle velocities from 20 km/h to 120 km/h with an interval 20 km/h. The research reveals the vibration mechanism of the single-support MBEJs considering coupled center beam resonance, which shows that dynamic responses of a given center beam will be influenced by the neighboring center beams due to their rebound after the vehicle wheels depart. Maximal DAF 1.5 appears at 120 km/h on the second center beam. The research results can be utilized for reference in the design, operation and maintenance of single-support MBEJs.

Seismic response of a highway bridge in case of vehicle-bridge dynamic interaction

  • Erdogan, Yildirim S.;Catbas, Necati F.
    • Earthquakes and Structures
    • /
    • 제18권1호
    • /
    • pp.1-14
    • /
    • 2020
  • The vehicle-bridge interaction (VBI) analysis might be cumbersome and computationally expensive in bridge engineering due to the necessity of solving large number of coupled system of equations. However, VBI analysis can provide valuable insights into the dynamic behavior of highway bridges under specific loading conditions. Hence, this paper presents a numerical study on the dynamic behavior of a conventional highway bridge under strong near-field and far-field earthquake motions considering the VBI effects. A recursive substructuring method, which enables solving bridge and vehicle equations of motion separately and suitable to be adapted to general purpose finite element softwares, was used. A thorough analysis that provides valuable information about the effect of various traffic conditions, vehicle velocity, road roughness and effect of soil conditions under far-field and near-field strong earthquake motions has been presented. A real-life concrete highway bridge was chosen for numerical demonstrations. In addition, sprung mass models of vehicles consist of conventional truck and car models were created using physical and dynamic properties adopted from literature. Various scenarios, of which the results may help to highlight the different aspects of the dynamic response of concrete highway bridges under strong earthquakes, have been considered.

전륜 서스펜션 성능향상을 위한 하이드로포밍 샤시 부품의 설계 최적화 (Design Optimization of Hydroforming Chassis Part for improving Front Suspension Performance)

  • 문만빈;김윤규;김효섭;진경수;김동학
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.187-190
    • /
    • 2009
  • Recently, automotive companies have invested in vehicle weight reduction and clean car development because of oil price rises and environmental problems. In particular, USA car makers have developed the vehicle spending 1 liter per 34km complying with PNGV(Partnership for a new generation of vehicle) and Europe car makers have developed the vehicle spending 3 liters per 100km. The USA government announced "The green car policy" in order to boost production of more fuel effective cars in 2009. According to the policy, it will be restricted to sell the car which spends more than 1 liter per 14.9km by 2020. To satisfy the current situations on automotive market, hydroforming technology has widely adapted vehicle structures such as engine cradle, chassis frame, A pillar, radiator support, etc. However, automotive companies have to consider formability and performance to improve and maximize the benefit from this technology in advance of detail design. The paper deals with one of the vehicle weight reduction methods using tube hydroforming technology and platform commonality in front suspension. FEA simulation is also introduced to evaluate hydro-formability and NVH performance at the beginning of design stage which is the best way to reduce the failure cost.

  • PDF

Hilbert transform based approach to improve extraction of "drive-by" bridge frequency

  • Tan, Chengjun;Uddin, Nasim
    • Smart Structures and Systems
    • /
    • 제25권3호
    • /
    • pp.265-277
    • /
    • 2020
  • Recently, the concept of "drive-by" bridge monitoring system using indirect measurements from a passing vehicle to extract key parameters of a bridge has been rapidly developed. As one of the most key parameters of a bridge, the natural frequency has been successfully extracted theoretically and in practice using indirect measurements. The frequency of bridge is generally calculated applying Fast Fourier Transform (FFT) directly. However, it has been demonstrated that with the increase in vehicle velocity, the estimated frequency resolution of FFT will be very low causing a great extracted error. Moreover, because of the low frequency resolution, it is hard to detect the frequency drop caused by any damages or degradation of the bridge structural integrity. This paper will introduce a new technique of bridge frequency extraction based on Hilbert Transform (HT) that is not restricted to frequency resolution and can, therefore, improve identification accuracy. In this paper, deriving from the vehicle response, the closed-form solution associated with bridge frequency removing the effect of vehicle velocity is discussed in the analytical study. Then a numerical Vehicle-Bridge Interaction (VBI) model with a quarter car model is adopted to demonstrate the proposed approach. Finally, factors that affect the proposed approach are studied, including vehicle velocity, signal noise, and road roughness profile.

Extraction of quasi-static component from vehicle-induced dynamic response using improved variational mode decomposition

  • Zhiwei Chen;Long Zhao;Yigui Zhou;Wen-Yu He;Wei-Xin Ren
    • Smart Structures and Systems
    • /
    • 제31권2호
    • /
    • pp.155-169
    • /
    • 2023
  • The quasi-static component of the moving vehicle-induced dynamic response is promising in damage detection as it is sensitive to bridge damage but insensitive to environmental changes. However, accurate extraction of quasi-static component from the dynamic response is challenging especially when the vehicle velocity is high. This paper proposes an adaptive quasi-static component extraction method based on the modified variational mode decomposition (VMD) algorithm. Firstly the analytical solutions of the frequency components caused by road surface roughness, high-frequency dynamic components controlled by bridge natural frequency and quasi-static components in the vehicle-induced bridge response are derived. Then a modified VMD algorithm based on particle swarm algorithm (PSO) and mutual information entropy (MIE) criterion is proposed to adaptively extract the quasi-static components from the vehicle-induced bridge dynamic response. Numerical simulations and real bridge tests are conducted to demonstrate the feasibility of the proposed extraction method. The results indicate that the improved VMD algorithm could extract the quasi-static component of the vehicle-induced bridge dynamic response with high accuracy in the presence of the road surface roughness and measurement noise.