• Title/Summary/Keyword: Vehicle Dynamics Model

Search Result 498, Processing Time 0.022 seconds

Modeling for Traction system of the Vehicle including Running Characteristics (주행특성을 고려한 차량 견인시스템 모델링)

  • Byun, Yeun-Sub;Kim, Young-Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1955-1961
    • /
    • 2007
  • In this paper, we propose the mathematical model for the vehicle system including running characteristics. The well defined model for a system is necessary to study and to enhance system performance. To model the dynamic properties of vehicle system, we have considered two fundamental parts. The first part is the motion equations for vehicle based on Newton's second law. The second part is the torque dynamics of the traction motor. These parts are affected by outer conditions such as adhesive coefficient, running resistance and gradient resistance. The each parts are presented by the numerical formula. To test the driving characteristics of the developed model, we performed the simulations by dynamic system simulation software, "SIMULINK" and the results are given for several conditions.

A Method for 3-D Dynamic Analysis of Tracked Vehicles on Soft Terrain of Seafloor (해저 연약 지반 주행차량의 3차원 동력학 해석 기법)

  • Hong, Sup;Kim, Hyung-Woo;Choi, Jong-Su
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.149-154
    • /
    • 2002
  • A simplified 3D dynamic model of tracked vehicle crawling on cohesive soft soil is investigated. The vehicle is assumed as rigid body with 6-dof. Cohesive soft soil is modeled through relations: pressure to sinkage, shear displacement to shear stress, and shear to dynamic sinkage. Equations of motion of vehicle are derived with respect to the body-fixed coordinates. In order to investigate 3D transient dynamics of tracked vehicle, Newmark's method is employed based on incremental-iterative algorithm. 3D dynamic simulations are conducted for a tracked vehicle model and steering performance is investigated.

  • PDF

A drive-by inspection system via vehicle moving force identification

  • OBrien, E.J.;McGetrick, P.J.;Gonzalez, A.
    • Smart Structures and Systems
    • /
    • v.13 no.5
    • /
    • pp.821-848
    • /
    • 2014
  • This paper presents a novel method to carry out monitoring of transport infrastructure such as pavements and bridges through the analysis of vehicle accelerations. An algorithm is developed for the identification of dynamic vehicle-bridge interaction forces using the vehicle response. Moving force identification theory is applied to a vehicle model in order to identify these dynamic forces between the vehicle and the road and/or bridge. A coupled half-car vehicle-bridge interaction model is used in theoretical simulations to test the effectiveness of the approach in identifying the forces. The potential of the method to identify the global bending stiffness of the bridge and to predict the pavement roughness is presented. The method is tested for a range of bridge spans using theoretical simulations and the influences of road roughness and signal noise on the accuracy of the results are investigated.

Virtual Prototyping Simulation for a Passenger Vehicle

  • Kwon Son;Park, Kyung-Hyun;Eom, Sung-Sook
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.448-458
    • /
    • 2001
  • The primary goal of virtual prototyping is to eliminate the need for fabricating physical prototypes, and to reduce cost and time for developing new products. A virtual prototyping seeks to create a virtual environment where the development of a new model can be flexible as well as rapid, and experiments can be carried out effectively concerning kinematics, dynamics, and control aspects of the model. This paper addresses the virtual environment used for virtual prototyping of a passenger vehicle. It has been developed using the dVISE environment that provides such useful features as actions, events, sounds, and light features. A vehicle model including features, and behaviors is constructed by employing an object-oriented paradigm and contains detailed information about a real-size vehicle. The human model is also implemented not only for visual and reach evaluations of the developed vehicle model, but also for behavioral visualization during a crash test. For the real time driving simulation, a neural network model is incorporated into the virtual environment. The cases of passing bumps with a vehicle are discussed in order to demonstrate the applicability of a set of developed models.

  • PDF

ROAD CROWN, TIRE, AND SUSPENSION EFFECTS ON VEHICLE STRAIGHT-AHEAD MOTION

  • LEE J-H.;LEE J. W.;SUNG I. C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.183-190
    • /
    • 2005
  • During normal operating conditions, a motor vehicle is constantly subjected to a variety of forces, which can adversely affect its straight-ahead motion performance. These forces can originate both from external sources such as wind and road and from on-board sources such as tires, suspension, and chassis configuration. One of the effects of these disturbances is the phenomenon of vehicle lateral-drift during straight-ahead motion. This paper examines the effects of road crown, tires, and suspension on vehicle straight-ahead motion. The results of experimental studies into the effects of these on-board and external disturbances are extremely sensitive to small changes in test conditions and are therefore difficult to guarantee repeatability. This study was therefore conducted by means of computer simulation using a full vehicle model. The purpose of this paper is to gain further understanding of the straight-ahead maneuver from simulation results, some aspects of which may not be obtainable from experimental study. This paper also aims to clarify some of the disputable arguments on the theories of vehicle straight-ahead motion found in the literature. Tire residual aligning torque, road crown angle, scrub radius and caster angle in suspension geometry, were selected as the study variables. The effects of these variables on straight-ahead motion were evaluated from the straight-ahead motion simulation results during a 100m run in free control mode. Examination of vehicle behavior during straight-ahead motion under a fixed control mode was also carried out in order to evaluate the validity of several disputable arguments on vehicle pull theory, found in the literature. Finally, qualitative comparisons between the simulation results and the test results were made to support the validity of the simulation results.

Experimental Study and Finite Element Analysis about Vehicle Laminated Glass Subject to Headform Impact (머리모형 충돌에 의한 자동차 접합유리의 실험적 연구 및 유한요소해석)

  • Choi, Jihun;Oh, Wontek;Kim, Jonghyuk;Park, Jongchan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.374-379
    • /
    • 2017
  • In vehicle to pedestrian accidents, cracks occur in the vehicle laminated glass due to impact of a pedestrian's head. In this study, FMH(Free Motion Headform) was used to experiment on and analyze the crack patterns on a vehicle laminated glass that collides with an adult headform at speeds of 20 km/h, 30 km/h, and 40 km/h, respectively. Applying the acquired experimental data and material property of the vehicle laminated glass to the structural analysis program LS-Dyna, we could develop the FE model of vehicle laminated glass similar to real vehicle laminated glass. We could estimate the head impact velocity and pedestrian's vehicle impact velocity using the Madymo program.

The impact of artificial discrete simulation of wind field on vehicle running performance

  • Wu, Mengxue;Li, Yongle;Chen, Ning
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.169-189
    • /
    • 2015
  • To investigate the effects of "sudden change" of wind fluctuations on vehicle running performance, which is caused by the artificial discrete simulation of wind field, a three-dimensional vehicle model is set up with multi-body dynamics theory and the vehicle dynamic responses in crosswind conditions are obtained in time domain. Based on Hilbert Huang Transform, the effects of simulation separations on time-frequency characteristics of wind field are discussed. In addition, the probability density distribution of "sudden change" of wind fluctuations is displayed, addressing the effects of simulation separation, mean wind speed and vehicle speed on the "sudden change" of wind fluctuations. The "sudden change" of vehicle dynamic responses, which is due to the discontinuity of wind fluctuations on moving vehicle, is also analyzed. With Principal Component Analysis, the comprehensive evaluation of vehicle running performance in crosswind conditions at different simulation separations of wind field is investigated. The results demonstrate that the artificial discrete simulation of wind field often causes "sudden change" in the wind fluctuations and the corresponding vehicle dynamic responses are noticeably affected. It provides a theoretical foundation for the choice of a suitable simulation separation of wind field in engineering application.

Studies on Ventilation Control for a Ventilated Supercavitating Vehicle (분사형 초공동 수중운동체의 가스 분사량 제어 연구)

  • Kim, Seonhong;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.206-221
    • /
    • 2015
  • Supercavitation is a modern technique which can be used to surround an underwater vehicle with a bubble in order to reduce the resistance of the vehicle. When the vehicle is at low speed in the deep sea, the cavitation number is relatively big and it is difficult to generate a cavity large enough to envelope the vehicle. In this condition, the artificial cavity, called ventilated cavity, can be used to solve this problem by supplying gas into the cavity and can maintain supercavitating condition. In this paper, a relationship between the ventilation gas supply rate and the cavity shape is determined. Based on the relationship a ventilation rate control is developed to maintain the supercavitating state. The performance of the ventilation control is verified with a depth change control. In addition, dynamics modeling for the supercavitating vehicle is performed by defining forces and moments acting on the vehicle body in contact with water. Simulation results show that the ventilation control can maintain the supercavity of an underwater vehicle at low speed in the deep sea.

Parametric Study of Curved Guideways for Urban Maglev Vehicle (도시형 자기부상열차의 곡선 가이드웨이 매개변수 연구)

  • Han, Jong-Boo;Kim, Ki-Jung;Han, Hyung-Suk;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.329-335
    • /
    • 2014
  • A maglev vehicle of middle-low speed subjected to both a lift force and a guidance force by a U-shaped single electromagnet is operated over a curved guideway without a guidance controller. Therefore, it is required to carefully decide the curve shape for preventing contact between the vehicle and the guiderail for the case that a Maglev vehicle is operated over a curved guideway with a small radius. Specifically, the shape of the transition curve is very important from the stability viewpoint. This study analyzes the influence of curve shape on maglev stability through parametric composition of the transition curve during vehicle guidance. To this end, a multibody dynamics-based threedimensional Maglev vehicle model was developed. The model was integrated with the vehicle, curved guideway, electromagnets, and their controllers. Using this model, a realistic parametric study including the curved guideway was carried out. The results of research should be considered usefully in the design of bogies and the curve shape.

Multi-Agent for Traffic Simulation with Vehicle Dynamic Model II : Development of Vehicle and Driver Agent (차량 동역학을 이용한 멀티에이전트 기반 교통시뮬레이션 개발 II : 운전자 및 차량 에이전트 개발)

  • 조기용;배철호;권성진;서명원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.136-145
    • /
    • 2004
  • In companion paper, the composition and structure of the traffic environment is derived. Rules to regulate agent behaviors and the frameworks to communicate between the agents are proposed. In this paper, the model of a driver agent which controls a vehicle agent is constructed. The driver agent is capable of having different driving styles. That is, each driver agent has individual behavior settings of the yielding index and the passing index. The yielding index can be defined as how often the agent yields in case of lane changes, and the passing index can be defined as how often the agent passes ahead. According to these indices, the agents overtake or make their lanes for other vehicles. Similarly, the vehicle agents can have various vehicle dynamic models. According to their dynamic characteristics, the vehicle agent shows its own behavior. The vehicle model of the vehicle agent contains the nonlinear subcomponents of engine, torque converter, automatic transmission, and wheels. The simulation has proceeded for an interrupted flow model. The result has shown that it is possible to express the characteristics of each vehicle and its driver in a traffic flow, and that the change of the traffic state is closely related with the distance and the signal delay between intersections. The system developed in this paper shows the effectiveness and the practical usefulness of the traffic simulation.