• Title/Summary/Keyword: Vehicle Behavior

Search Result 969, Processing Time 0.024 seconds

Driving behavior Analysis to Verify the Criteria of a Driver Monitoring System in a Conditional Autonomous Vehicle - Part I - (부분 자율주행자동차의 운전자 모니터링 시스템 안전기준 검증을 위한 운전 행동 분석 -1부-)

  • Son, Joonwoo;Park, Myoungouk
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.1
    • /
    • pp.38-44
    • /
    • 2021
  • This study aimed to verify the criteria of the driver monitoring systems proposed by UNECE ACSF informal working group and the ministry of land, infrastructure, and transport of South Korea using driving behavior data. In order to verify the criteria, we investigated the safety regulations of driver monitoring systems in a conditional autonomous vehicle and found that the driver monitoring measures were related to eye blinks times, head movements, and eye closed duration. Thus, we took two different experimental data including real-world driving and simulator-based drowsy driving behaviors in previous studies. The real-world driving data were used for analyzing blink times and head movement intervals, and the drowsiness data were used for eye closed duration. In the real-world driving study, 52 drivers drove approximately 11.0 km of rural road (about 20 min), 7.9 km of urban road (about 25 min), and 20.8 km of highway (about 20 min). The results suggested that the appropriate number of blinks during the last 60 seconds was 4 times, and the head movement interval was 35 seconds. The results from drowsy driving data will be presented in another paper - part 2.

Driving behavior Analysis to Verify the Criteria of a Driver Monitoring System in a Conditional Autonomous Vehicle - Part II - (부분 자율주행자동차의 운전자 모니터링 시스템 안전기준 검증을 위한 운전 행동 분석 -2부-)

  • Son, Joonwoo;Park, Myoungouk
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.1
    • /
    • pp.45-50
    • /
    • 2021
  • This study aimed to verify the criteria of the driver monitoring systems proposed by UNECE ACSF informal working group and the ministry of land, infrastructure, and transport of South Korea using driving behavior data. In order to verify the criteria, we investigated the safety regulations of driver monitoring systems in a conditional autonomous vehicle and found that the driver monitoring measures were related to eye blinks times, head movements, and eye closed duration. Thus, we took two different experimental data including real-world driving and simulator-based drowsy driving behaviors in previous studies. The real-world driving data were used for analyzing blink times and head movement intervals, and the drowsiness data were used for eye closed duration. In the drowsy driving study, 10 drivers drove approximately 37 km of a monotonous highway (about 22 min) twice. The results suggested that the appropriate duration of eyes continuously closed was 4 seconds. The results from real-world driving data were presented in the other paper - part 1.

A Vehicle Adaptive Cruise Control Design in Consideration of Human Driving Characteristics (운전자 주행 특성을 고려한 차량 적응 순항 제어기 설계)

  • Gu, Ja-Sung;Yi, Kyong-Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.32-38
    • /
    • 2006
  • A vehicle adaptive cruise control strategy based on human drivers' driving characteristics has been investigated. Human drivers driving characteristics have been analyzed using vehicle test data obtained from 125 participants. The control algorithm has been designed to incorporate the driving characteristics of the human drivers and to achieve natural vehicle behavior of the controlled vehicle that would reduce the workload of the human driver. Vehicle following characteristics of the cruise controlled vehicle have been compared to real-world driving radar sensor data of human drivers using a validated vehicle simulator. and compare nominal cruise control and adaptive cruise control.

DESIGN AND EVALUATION OF INTELIGENT VEHICLE CRUISE CONTROL SYSTEMS USING A VEHICLE SIMULATOR

  • Han, D.H.;Yi, K.S.;Lee, J.K.;Kim, B.S.;Yi, S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.377-383
    • /
    • 2006
  • This paper presents evaluation and comparisons of manual driving and driving with intelligent cruise control(ICC) systems. An intelligent vehicle cruise control strategy has been designed to achieve natural vehicle behavior of the controlled vehicle that would make human driver feel comfortable and therefore would increase driver acceptance. The evaluation and comparisons of the ICC and manual driving have been conducted using real-world vehicle driving data and an ICC vehicle simulator.

Fuzzy Logic Speed Control Stability Improvement of Lightweight Electric Vehicle Drive

  • Nasri, Abdelfatah;Hazzab, Abdeldjabar;Bousserhane, Ismail.K;Hadjeri, Samir;Sicard, Pierre
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.129-139
    • /
    • 2010
  • To be satisfied with complex load condition of electric vehicle, fuzzy logic control (FLC) is applied to improve speed response and system robust performance of induction traction machine based on indirect rotor field orientation control. The proposed propulsion system consists of two induction motors (IM) that ensure the drive of the two back driving wheels of lightweight electric vehicle by means the vehicle used for passenger transportation. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling, independently, every driving wheel to turn at different speeds in any curve. Our electric vehicle fuzzy inference system control's simulated in Matlab SIMULINK environment, the results obtained present the efficiency and the robustness of the proposed control with good performances compared with the traditional PI speed control, the FLC induction traction machine presents not only good steady characteristic, but with no overshoot too.

A Study on Roll Characteristics of Railway Vehicle (철도차량 롤 특성에 대한 고찰)

  • 김필환
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.512-521
    • /
    • 1998
  • The roll characteristic of railway vehicle is an important factor that affects the roll-over of vehicle and lateral ride comfort of passenger. Generally the roll characteristics of railway vehicle is defined by the term of roll-coefficient, s, which represents the ratio of incline or carbody to that of rail-cant. The limit values of roll coefficient recommended in UIC Bre 0.4 for coach without pantograph and 0.15 for vehicle with pantograph. The roll coefficient can be calculated by VAMPIRE that is the well-known commercial software for analysis of dynamic behavior of railway vehicle. The value of roll coefficient is effected by height of gravity center of carbody, stiffness of primary and secondary suspension and etc. The calculated roll-coefficient for electric locomotive and passenger coach is 0.12 and 0.77 respectively, The additional equipment such as anti-roll bar is considered in order to decrease roll-coefficient of passenger coach. In relation to roll characteristics, the analysis for roll-over due to wind is a1so performed. The results show that roll-characteristics affect the roll-over of vehicle.

  • PDF

System Modeling and Simulation for an In-wheel Drive Type $6{\times}6$ Vehicle (인휠드라이브 타입 $6{\times}6$ 차량 플랫폼을 위한 시스템 모델링 및 시뮬레이션)

  • Lee, Jeong-Yeob;Suh, Seung-Whan;Shon, Woong-Hee;Kim, Chang-Jun;Han, Chang-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.1-11
    • /
    • 2011
  • The skid-steering method that applied a number of mobile robot currently is extremely effective in narrow area. But it contains several problems such as its natural properties, slip, occurred by different direction between vehicle's driving and wheel's rotary. Through this paper, suitable control algorithm of $6{\times}6$ skid steering wheeled vehicle and its driving methods are proposed by analyzing the behavior $6{\times}6$ skid-steered wheeled vehicle model designed by engineering analysis strategy. To do this, based on a behavior of designed driving system, required torque and other performance of in-wheel type motor system are considered, and finally control algorithm for each wheel is proposed and simulated using this model. To test the proposed vehicle system, driver model is designed using PID closed loop system and included in the total driving control algorithm. The Performance of designed vehicle model is verified by using DYC (Direct Yaw Control) cornering mode and slip mode control to follow the steering input which are essential to evaluate the driving performance of $6{\times}6$ vehicle. Proposed modeling strategy and control method will be implemented to the real $6{\times}6$ in-wheel drive type vehicle.

A Study of Calculation Methodology of Vehicle Emissions based on Driver Speed and Acceleration Behavior (차량 주행상태를 고려한 차량 배출가스 산정 모형 구축)

  • Han, Dong-Hui;Lee, Yeong-In;Jang, Hyeon-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.5
    • /
    • pp.107-120
    • /
    • 2011
  • Traffic signal is one of the major factors that affect the amount of vehicle emissions on urban highway. The amount of vehicle emissions in urban area is highly affected by the vehicle's cruising speeds heavily influenced by the traffic signal lighting conditions. It was attempted in this study to trace the changing patterns of the vehicle emissions by collecting the emission data from a set of simulation studies and by categorizing vehicle cruising conditions into four different groups: idling, acceleration, deceleration, and running at a constant speed. Authors propose a simple emission model prepared based on Kinematic theory. The validation test results showed that the amount of the emission estimated by the proposed model was relatively satisfactory compared to the one of the existing model employing the average speed data only as the determinant.

Development of Comprehensive Evaluation Index for In-vehicle Warning Information Systems (혼합가중치기반 차내 경고정보시스템 통합평가지표 개발)

  • Joo, Shinhye;Oh, Cheol;Hong, Sungmin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.6
    • /
    • pp.10-24
    • /
    • 2014
  • In-vehicle warning information systems(IWIS) is an effective countermeasure for preventing traffic crashes. It provides drivers with warnng messages about upcoming hazards to draw proper evasive maneuvering. This study developed a methodology for evaluating the effectiveness of IWIS based on an integrated index to identify driver's responsive behavior. The proposed index consists of characteristics of longitudinal and lateral behavior of vehicle maneuverings. Also, a method to assign mixed-weights in the context of multi-criteria decision making framework was adopted to develop the evaluation method. It is expected that the outcome of this study is useful in designing more effective in-vehicle warning information systems.