• Title/Summary/Keyword: Vehicle Air Condition

Search Result 160, Processing Time 0.038 seconds

Evaluation of the Characteristics of the Aluminum Alloy Casting Material by Heat Treatment (AC8A 알루미늄합금 주조재의 열처리에 의한 특성 평가)

  • Lee, Syung Yul;Park, Dong Hyun;Won, Jong Pil;Kim, Yun Hae;Lee, Myung Hoon;Moon, Kyung Man;Jeong, Jae Hyun
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.280-285
    • /
    • 2012
  • Aluminum is on active metal, but it is well known that its oxide film plays a role as protective barrier which is comparatively stable in air and neutral aqueous solution. Thus, aluminum alloys have been widely applied in architectural trim, cold & hot-water storage vessels and piping etc., furthermore, the aluminum alloy of AC8A have been widely used in mold casting material of engine piston because of its properties of temperature and wear resistance. In recent years, the oil price is getting higher and higher, thus the using of low quality oil has been significantly increased in engines of ship and vehicle. Therefore it is considered that evaluation of corrosion resistance as well as wear resistance of AC8A material is also important to improve its property and prolong its lifetime. In this study, the effect of solution and tempering heat treatment to corrosion and wear resistance is investigated with electrochemical method and measurement of hardness. The hardness decreased with solution heat treatment compared to mold casting condition, but its value increased with tempering heat treatment and exhibited the highest value of hardness with tempering heat treatment temperature at $190^{\circ}C$ for 24hrs. Furthermore, corrosion resistance increased with decreasing of the hardness, and decreased with increasing of the hardness reversely. As a result, it is suggested that the optimum heat treatment to improve both corrosion and wear resistance is tempering heat treatment temperature at $190^{\circ}C$ for 16hrs.

Empirical Propagation Path Loss Model for ATC Telecommunication in the Concourse Environment (콘코스 환경에서 항공 정보통신의 실험적인 전파 경로 모델에 관한 연구)

  • Kim, Kyung-Tae;Park, Hyo-Dal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.9
    • /
    • pp.765-772
    • /
    • 2013
  • In this paper, we studied the path loss model of Air Traffic Control(ATC) telecommunication radio channel at the Incheon International Airport(IIA) concourse area. We measured wave propagation characteristics on the two frequencies among VHF/UHF channel bands. The transmitting site radiated the Continuous Wave(CW). The propagation measurement was taken using the moving vehicle equipped with receiver and antenna. The transmitting power, frequency, and antenna height are the same as the current operating condition. The path loss exponent and intercept parameters were extracted by the basic path loss model and hata model. The path loss exponents at Concourse area were 3.1/3.13 and 3.01/3.38 respectively in 128.2MHz and 269.1MHz. The deviation of prediction error is 2.77/3.17 and 4.01/3.66. The new path loss equation at the Concourse area was also developed using the derived path loss parameters. The new path loss model was compared with other models. This result will be helpful for the ATC site selection and service quality evaluation.

A Numerical Study on the Structural Stability Optimization of the Core Components of a 17cc Automotive Compressor (17cc급 자동차용 압축기 핵심부품의 구조 안정성에 관한 수치적 연구)

  • Yang, Yong-Kun;Wu, Yu-Ting;Qin, Zhen;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.69-75
    • /
    • 2021
  • Fuel economy has always been a major issue for the automotive industry due to environmental concerns. In particular, it is known that only 5-20% of the energy generated in a car that mainly uses an internal combustion engine is converted to increase fuel efficiency, many methods have been proposed. Among these methods, weight reduction is most commonly used because it is the simplest and cheapest. Weight is always the main reason for energy consumption, therefore, reducing weight is the best way to increase fuel efficiency while simultaneously saving on material costs. To reduce the weight of a compressor, material substitution is used. However, aluminum (a lighter metal substitute) is more fragile than steel, therefore, structural stability must be verified through testing. In this paper, we performed a 3D analysis to investigate whether aluminum can be used without compromising structural stability. Our investigation included static analysis and thermal analysis. As a result, we found that an aluminum swash plate can be safely applied on a shaft instead of steel; it reduces weight while maintaining stability that is equal to or better than steel.

A Study on Real Time Fault Diagnosis and Health Estimation of Turbojet Engine through Gas Path Analysis (가스경로해석을 통한 터보제트엔진의 실시간 고장 진단 및 건전성 추정에 관한 연구)

  • Han, Dong-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.311-320
    • /
    • 2021
  • A study is performed for the real time fault diagnosis during operation and health estimation relating to performance deterioration in a turbojet engine used for an unmanned air vehicle. For this study the real time dynamic model is derived from the transient thermodynamic gas path analysis. For real fault conditions which are manipulated for the simulation, the detection techniques are applied such as Kalman filter and probabilistic decision-making approach based on statistical hypothesis test. Thereby the effectiveness is verified by showing good fault detection and isolation performances. For the health estimation with measurement parameters, it shows using an assumed performance degradation that the method by adaptive Kalman filter is feasible in practice for a condition based diagnosis and maintenance.

An Experimental Study on the Measurement of Water Surface Discharge Temperature of High-Temperature Bubble Injected into Cylindrical Acrylic Water Tank (원통 아크릴 수조로 주입된 고온 기포의 수면 배출 온도 측정에 관한 실험적 연구)

  • SeokTae Yoon;YongJin Cho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.99-105
    • /
    • 2023
  • Submarines, which require a high degree of survivability, are among the most critical combat weapon systems in military strategic assets. Conventional submarines need air to operate their propulsion systems. Exhaust gases released into the water during snorkel navigation heat the surrounding fluid, producing a temperature wake. This wake, in turn, reduces the submarine's survivability. In this study, we conducted a preliminary experiment on the temperature traces formed by an underwater submarine's waste discharge. For this purpose, we collected propulsion system and navigation condition data from domestically introduced submarines and developed an experimental system to measure the temperature traces. As a result, we observed that high-temperature bubbles injected into the tank broke down into smaller sizes, and their temperature dropped to levels similar to the surrounding fluid. This observation was confirmed using a thermocouple sensor. Consequently, the thermal imaging system designed to measure the temperature trace of the water's surface did not detect any significant temperature traces.

A Study on the Emissions Characteristics of a LPG Vehicle According to Various Test Modes and Ambient Conditions (다양한 시험모드와 환경조건에 따른 LPG 차량의 배출특성 연구)

  • Lee, Min-Ho;Ha, Jong-Han
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • As the interest on the air pollution is gradually rising up at home and abroad, automotive and fuel researchers have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward various main issues : whether PM emissions should be regulated for diesel and gasoline vehicles and whether gasoline and LPG powered vehicles can be further neglected from PM emission inventories. Finally, the greenhouse gas regulation has been discussed including automotive emission regulation. The greenhouse gas and emissions of automotive had many problem that cause of ambient pollution, health effects. Based on various test modes and ambient conditions, this paper discusses the characteristics of LPG on exhaust emissions and greenhouse gases. Also, this paper assessed emission characteristics due to the test temperature. These test temperature were performed by dividing the temperature of the test mode and the lowest local temperature in winter. Through this study, the correlation of vehicle test mode and ambient condition, exhaust emission, greenhouse gas emission was analyzed.

Probabilistic Braking Performance Analysis for Train Control System (열차제어시스템을 위한 확률적 제동성능분석)

  • Choi, Don Bum
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.319-326
    • /
    • 2018
  • The safety interval to prevent collision between trains in a train control system is based on the braking distance according to the emergency braking of the train. The evaluation of the braking performance is based on the longitudinal train dynamics or the commissioning test in the test track, but since the conditions such as the weakening of the adhesion coefficient between the wheel and rail can not all be considered, these conventional methods are not sufficient to design of the train control systems. Therefore, in this study, the Monte Carlo Method (MCM) which can consider various environments is used to analyze braking performance and limitations. The braking model is based on the air braking used in the emergency braking and is modeled to take into account the braking pressure, efficiency, friction coefficient, adhesion condition, and vehicle mass distribution. It is confirmed that braking performance can be improved by controlling the quality of braking device. In addition, the change of the braking performance was confirmed according to the vehicle constituting the train. The results of this study are expected to be used as basic information for designing safety clearance for the train control systems and as a basis for improving the braking performance of railway vehicles.

Development of Panel-Based Rapid Aerodynamic Analysis Method Considering Propeller Effect (프로펠러 효과를 반영 가능한 패널 기반 신속 공력 해석 기법 개발)

  • Tai, Myungsik;Lee, Yebin;Oh, Sejong;Shin, Jeongwoo;Lim, Joosup;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.107-120
    • /
    • 2021
  • Electric-powered distributed propulsion aircraft possess a complex wake flow and mutual interference with the airframe, due to the use of many propellers. Accordingly, in the early design stage, rapid aerodynamic and load analysis considering the effect of propellers for various configurations and flight conditions are required. In this study, an efficient panel-based aerodynamic analysis method that can take into account the propeller effects is developed and validated. The induced velocity field in the region of propeller wake is calculated based on Actuator Disk Theory (ADT) and is considered as the boundary condition at the vehicle's surface in the three-dimensional steady source-doublet panel method. Analyses are carried out by selecting an isolated propeller of the Korea Aerospace Research Institute (KARI)'s Quad Tilt Propeller (QTP) aircraft and the propeller-wing configuration of the former experimental study as benchmark problems. Through comparisons with the results of computational fluid dynamics (CFD) based on actuator methods, the wake velocity of propeller and the changes in the aerodynamic load distribution of the wing due to the propeller operation are validated. The method is applied to the analysis of the Optional Piloted Personal Aerial Vehicle (OPPAV) and QTP, and the practicality and validity of the method are confirmed through comparison and analysis of the computational time and results with CFD.

Legal Study for the KSLV launching - Products & Third Party Liability - (KSLV발사에 따른 제작 및 제3자피해 책임에 대한 우주법적 소고)

  • Shin, Sung-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.21 no.1
    • /
    • pp.169-189
    • /
    • 2006
  • In 2007, KSLV(Korea Small Launching Vehicle) that we made at Goheung National Space Center is going to launch and promotes of our space exploration systematically and 'Space Exploration Promotion Act' was enter into force. 'Space Exploration Promotion Act' article 3, section 1, as is prescribing "Korean government keeps the space treaties contracted with other countries and international organizations and pursues after peaceful uses of outer space." The representative international treaties are Outer Space Treaty (1967) and Liability Convention (1972) etc. In Liability convention article 2, "A launching State shall be absolutely liable to pay compensation for damage caused by its space object on the surface of the earth or to aircraft in flight. The important content of the art. 2 is the responsible entity is the 'State' not the 'Company'. According by Korean Space Exploration Act art. 14, person who launches space objects according to art. 8 and art. 11 must bear the liability for damages owing to space accidents of the space objects. Could Korean government apply the Products Liability Act which is enter into force from July 1, 2002 to space launching person? And what is the contact type between Korea Aerospace Research Institute(KARl) and Russia manufacturer. Is that a Co-Development contract or Licence Product contract? And there is no exemption clause to waive the Russia manufacturer's liability which we could find it from other similar contract condition. If there is no exemption clause to the Russia manufacturer, could we apply the Korean Products Liability Act to Russia one? The most important legal point is whether we could apply the Korean Products Liability Act to the main component company. According by the art. 17 of the contract between KARl and the company, KARl already apply the Products Liability Act to the main component company. For reference, we need to examine the Appalachian Insurance co. v. McDonnell Douglas case, this case is that long distance electricity communication satellite of Western Union Telegraph company possessions fails on track entry. In Western Union's insurance company supplied to Western Union with insurance of $ 105 millions, which has the satellite regard as entirely damage. Five insurance companies -Appalachian insurance company, Commonwealth insurance company, Industrial Indemnity, Mutual Marine Office, Northbrook Excess & Surplus insurance company- went to court against McDonnell Douglases, Morton Thiokol and Hitco company to inquire for fault and strict liability of product. By the Appalachian Insurance co. v. McDonnell Douglas case, KARl should waiver the main component's product liability burden. And we could study the possibility of the adapt 'Government Contractor Defense' theory to the main component company.

  • PDF

The Study on Empirical Propagation Path Loss Model in the Antler Terminal Environment (엔틀러 터미널 환경에서 실험적인 패스 로스 모델에 관한 연구)

  • Kim, Kyung-Tae;Kim, Jin-Wook;Jo, Yun-Hyun;Kim, Sang-Uk;Yoon, In-Seop;Park, Hyo-Dal
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.5
    • /
    • pp.516-523
    • /
    • 2013
  • In this paper, The path loss model of Air Traffic Control(ATC) telecommunication radio channel has been studied at the Incheon International Airport(IIA) with the terminal with two antlers. We measured two frequencies among VHF/UHF channel bands. The transmitting site radiated the Continuous Wave(CW). The propagation measurement was taken using the moving vehicle equipped with receiver and antenna. The transmitting power, frequency and antenna height are the same as the current operating condition. The path loss exponent and intercept parameters were extracted by the basic path loss model and hata model. The path loss exponents at passager terminal areas were 3.32 and 3.10 respectively in 128.2 MHz and 269.1 MHz. The deviation of prediction error is 9.69 and 9.65. The new path loss equation at the terminal area was also developed using the derived path loss parameters. The new path loss was compared with other models. This result will be helpful for the ATC site selection and service quality evaluation.