DOI QR코드

DOI QR Code

Probabilistic Braking Performance Analysis for Train Control System

열차제어시스템을 위한 확률적 제동성능분석

  • Choi, Don Bum (Korea Railroad Research Institute Urban Transit Research Team)
  • 최돈범 (한국철도기술연구원 도시철도연구팀)
  • Received : 2018.10.26
  • Accepted : 2018.12.19
  • Published : 2018.12.30

Abstract

The safety interval to prevent collision between trains in a train control system is based on the braking distance according to the emergency braking of the train. The evaluation of the braking performance is based on the longitudinal train dynamics or the commissioning test in the test track, but since the conditions such as the weakening of the adhesion coefficient between the wheel and rail can not all be considered, these conventional methods are not sufficient to design of the train control systems. Therefore, in this study, the Monte Carlo Method (MCM) which can consider various environments is used to analyze braking performance and limitations. The braking model is based on the air braking used in the emergency braking and is modeled to take into account the braking pressure, efficiency, friction coefficient, adhesion condition, and vehicle mass distribution. It is confirmed that braking performance can be improved by controlling the quality of braking device. In addition, the change of the braking performance was confirmed according to the vehicle constituting the train. The results of this study are expected to be used as basic information for designing safety clearance for the train control systems and as a basis for improving the braking performance of railway vehicles.

열차제어시스템에서 열차간 추돌을 방지하기 위한 안전간격은 열차의 비상제동에 따른 제동거리를 기반으로 한다. 제동거리 성능평가는 동역학적 해석과 시운전시험을 통한 확인이 있으나 두 방법 모두 차륜과 레일의 점착계수의 약화 등과 같은 조건을 모두 고려할 수 없기 때문에 열차제어시스템의 설계에 활용하기에는 충분하지 않다. 따라서 본 연구에서는 다양한 환경을 고려할 수 있는 몬테카를로 방법을 이용하여 제동성능을 분석하고자 하였다. 제동모델은 비상제동에서 사용하는 공기제동을 기초로 하였으며, 제동압력, 제동효율, 제동 마찰계수, 점착계수, 차량의 질량분포 등을 고려할 수 있도록 모델링하였다. 영향 인자 분포의 변화에 따른 제동성능의 변화를 검토하고 이를 바탕으로 제동장치의 품질 제어를 통해 제동성능은 개선될 수 있음을 확인하였다. 또한, 열차를 구성하는 차량 편성에 따라 제동성능의 변화를 확인하였다. 본 연구의 결과는 향후 열차제어시스템의 안전간격 설계의 기초자료로 활용될 뿐 아니라 철도차량의 제동성능 향상의 근거자료로 활용될 수 있을 것으로 예상된다.

Keywords

Acknowledgement

Supported by : 한국철도기술연구원

References

  1. Sehchan Oh, Kyunghee Kim, Hyeonyeong Choi, Minsoo Kim (2016), Train-centric distributed interlocking system for autonomous train control, Proc. of fall conference on the Korean Society for Railway, 2016
  2. J.Y Kim, S.W. Choi, Y.S. Song, Y.K. Yoon, Y.K. Kim (2012), Automatic Train control over LTE: Design and performance evaluation, IEEE communications magazine, October pp. 102-109
  3. Y.K. kim, Y.S. Song S. C. Oh (2012), Study on the Plan of the KRTCS technology development unrelated to speed and operational environment 2012 IASME-WSEAS, Athens, pp. 215-219
  4. B. Ning, T. Tang, K. Qiu, C.Gau & Q. Wang (2010), Advanced Train Control System: CTCS-Chinese Train Control System, WIT press, Southampton, pp. 1-8
  5. ERRI B 126 RP 30 (2001) Existing and future train control and command systems on the European railways­Models for deceleration curves
  6. UIC B 126/DT 421 (2008) comparison between probabilistic mathematical safety margins calculations and operational data
  7. M. Malvezzi, B. Allotta, P. Presciani, P. Toni (2003), Probabilistic Analysis of Braking Performance in Railways, Proc. of the IMechE, Journal of Rail and Rapid Transit, vol. 217 Part F, pp.149-165. https://doi.org/10.1243/095440903769012867
  8. Hyunjik Cho, Wonsang Lee (2018), A Study on Prediction of Running Resistance and Train Performance, Proc. of spring conference on the Korean Soceity for Railway
  9. Leaflet UIC 544-1 (1979) Brakes­-Braking Power,3rd edition, Reprint dated
  10. Leaflet UIC 541-3, 4th edition (1993) Brakes-Disc Brakes and Disc Brake Pads-General Conditions Governing Bench Tests
  11. UIC 541-4, 2nd edition (1990) Brakes-Brakes with Composition Brake Blocks
  12. UIC B 126/DT 407 (2005) Safety margins for continuous speed control systems on existing lines and migration strategies for ETCS/ERTMS