• Title/Summary/Keyword: Vehicle/Tire

Search Result 391, Processing Time 0.026 seconds

FMFNN Modeling of the Tire Characteristics for Ground Vehicle Control (차량 제어를 위한 타이어 특성의 퍼지 소속 함수 신경망 모델링)

  • 박명관;서일홍
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.57-71
    • /
    • 1996
  • 차량 모델 비선형성의 주된 요인중 하나는 타이어의 비선형성이라고 할 수 있다. 타이어 모델도 간편화하기 위해 선형화된 타이어 모델을 적용할 경우에 저속 주행 또는 고속 주행이라고도 조향각이 적을 때는 문제가 없지만, 급격한 가감속과 과도한 조향각을 주었을 때는 타이어 미끄럼 각(Tire Slip Angle)이 급격히 변화되므로 선형화 된 타이어 모텔을 적용하지 못하게 된다. 그러므로 타이어와 지면 사이의 물리적 현상을 자세히 표현할 수 있는 비선형 타이어 모델을 적용하지 못하게 된다. 그러므로 타이어와 지면 사이의 물리적 현상을 자세히 표현할 수 있는 비선형 타이어 모델이 요구되어진다. 실험적 모델은 실제 차량의 실험 데이터를 바탕으로 커브 피팅(Curve Fitting)하여 타이어의 동특성을 표현하도록 모델링 하므로서 모델의 정확도를 높일 수 있는 반면 요구하는 계수들이 많아지게 되어 계산량이 증가되는 단점이 있다. 기존의 타이어 모델 연구 결과에 대해 분석하고, 관측 자료들을 바탕으로 FMFNN(Fuzzy Membership Function based Neural Network)을 이용한 함수 근사화로서 타이어 횡축력과 종축력의 모델링 방법을 제안하였다.

  • PDF

GA-BASED PID AND FUZZY LOGIC CONTROL FOR ACTIVE VEHICLE SUSPENSION SYSTEM

  • Feng, J.-Z.;Li, J.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.181-191
    • /
    • 2003
  • Since the nonlinearity and uncertainties which inherently exist in vehicle system need to be considered in active suspension control law design, this paper proposes a new control strategy for active vehicle suspension systems by using a combined control scheme, i.e., respectively using a genetic algorithm (GA) based self-tuning PID controller and a fuzzy logic controller in two loops. In the control scheme, the PID controller is used to minimize vehicle body vertical acceleration, the fuzzy logic controller is to minimize pitch acceleration and meanwhile to attenuate vehicle body vertical acceleration further by tuning weighting factors. In order to improve the adaptability to the changes of plant parameters, based on the defined objectives, a genetic algorithm is introduced to tune the parameters of PID controller, the scaling factors, the gain values and the membership functions of fuzzy logic controller on-line. Taking a four degree-of-freedom nonlinear vehicle model as example, the proposed control scheme is applied and the simulations are carried out in different road disturbance input conditions. Simulation results show that the present control scheme is very effective in reducing peak values of vehicle body accelerations, especially within the most sensitive frequency range of human response, and in attenuating the excessive dynamic tire load to enhance road holding performance. The stability and adaptability are also showed even when the system is subject to severe road conditions, such as a pothole, an obstacle or a step input. Compared with conventional passive suspensions and the active vehicle suspension systems by using, e.g., linear fuzzy logic control, the combined PID and fuzzy control without parameters self-tuning, the new proposed control system with GA-based self-learning ability can improve vehicle ride comfort performance significantly and offer better system robustness.

Effect of the Power Steering System Driving Torque on Vehicle Fuel Economy in a Passenger Car (Power Steering System의 구동력이 차량 모드주행연비에 미치는 영향)

  • Kim Namkyun;Han Changho;Kim Wooseok;Lee Jonghwa;Park Jinil;Park Kyungseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.60-67
    • /
    • 2006
  • To improve the vehicle fuel economy, various technologies have been studied. Meanwhile it deteriorates fuel economy that the increased driving torque for Power Steering System (PSS) due to weighted vehicle and widened tire for low speed driving and parking. So the larger driving torque for PSS is, the lower fuel economy is. Therefore, the study about the effect of the driving torque for PSS and the engine total friction must be preceded to improve the vehicle fuel economy. In this study, a PSS module separated from the vehicle is used to measure the driving torque for PSS with respect to the pressure of PSS. The result shows that the driving torque for PSS was in direct proportion to the pressure of PSS 3 (N-m) driving torque for PSS vs. 10 (bar) pressure of PSS, and 8 (N-m) vs. 40 (bar). In addition, the driving torque and pressure for PSS was measured according to the engine speed in the component test condition which was in the vehicle condition. Measuring the driving torque for PSP in the vehicle condition was established by using the VeFAS which was a fuel economy analyzer developed in our lab and installing PSS By-pass line. The effect of the driving torque for PSS on the vehicle fuel economy was analyzed with FTP-75 cold start mode.

Dynamic Stress Analysis of Vehicle Frame Using a Nonlinear Finite Element Method

  • Kim, Gyu-Ha;Cho, Kyu-Zong;Chyun, In-Bum;Park, Seob
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1450-1457
    • /
    • 2003
  • Structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of durability, noise/vibration/harshness (NVH), crashworthiness and passenger safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, we used the Virtual Proving Ground (VPG) approach for obtaining the dynamic stress or strain history and distribution. The VPG uses a nonlinear, dynamic, finite element code (LS-DYNA) which expands the application boundary outside classic linear, static assumptions. The VPG approach also uses realistic boundary conditions of tire/road surface interactions. To verify the predicted dynamic stress and fatigue critical region, a single bump run test, road load simulation, and field test have been performed. The prediction results were compared with experimental results, and the feasibility of the integrated life prediction methodology was verified.

Vehicle Dynamic Analysis Using Nonlinear Finite Element Analysis Program(LS-DYNA) (비선형 유한요소 해석프로그램(LS-DYNA)을 이용한 차량 동력학해석)

  • Min, Han-Ki;Lee, Hyun;Yang, In-Young
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.36-42
    • /
    • 2002
  • Structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, noise/vibration/harshness(NVH), crashworthiness and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, we used the virtual proving ground(VPG) approach for obtaining the dynamic characteristics. VPG approach uses a nonlinear, dynamic, finite element code(LS-DYNA3D) which expands the application boundary outside the classic linear, antic assumptions. VPG approach also uses realistic boundary conditions of tire/road surface interactions. To verify the predicted dynamic results, a single lane change test has been performed. The prediction results were compared with the experimental test results, and the feasibility of the integrated CAE analysis methodology was verified.

Parameter Analysis of Sound Radiation for Bridges Under Moving Vehicles (이동차량하중에 의해 발생되는 교량진동음압의 매개변수 분석)

  • Lee Yong-Seon;Kim Sang-Ryo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.772-777
    • /
    • 2006
  • An acoustic finite element model of a bridge is developed to evaluate the noise generated by the traffic-induced vibration of the bridge. The dynamic response of a multi-girder bridge, modeled by a 3-dimensional frame element model, is analyzed with a 3-axle(8DOF) truck model and a 5-axle(l3DOF) semi-trailer. The flat plate element is used to analyze the acoustic pressure due to the fluid-structure interactions between the vibrating surface and contiguous acoustic fluid medium. The radiation fields of noise with a specified distribution of vibrating velocity and pressure on the structural surface are also computed using the Kirchhoff-Helmholtz integral. In an attempt to illustrate the influence of the structural vibration noise of a bridge to total noise level around the bridge, the random function is used to generate the vehicle noise source including the engine noise and the rolling noise interacting between the road and tire. Among the diverse parameters affecting the dynamic response of bridge, the vehicle velocity, the vehicle weight, the spatial distribution of the road surface roughness, the stiffness degradation of the bridge and the variation of the air temperature changing the air density are found to be the main factors that increase the level of vibration noise. Consequently, The amplification rate of noise increases with the traveling speed and the vehicle weight.

  • PDF

Dynamic Performance Analysis for 6WD/6WS Armored Vehicles (6WD/6WS 군용차량의 동역학적 성능해석)

  • 홍재희;김준영;허건수;장경영;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.155-166
    • /
    • 1997
  • In this study, a simulation tool is developed in order to investigate non steady-state cornering performance of 6WD/6WS special-purpose vehicles. 6WD vehicles are believed to have good performance on off-the-road maneuvering and to have fail-safe capabilities. But the cornering performances of 6WS vehicles are not well understood in the related literature. In this paper, 6WD/6WS vehicles are modeled as a 18 DOF system which includes non-linear vehicle dynamics, tire models, and kinematic effects. Then the vehicle model is constructed into a simulation tool using the MATLAB /SIMULINK so that input/output and vehicle parameters can be changed easily with the modulated approach. Cornering performance of the 6WS vehicle is analyzed for brake steering and pivoting, respectively. Simulation results show that cornering performance depends on the middle-wheel steering as well as front/rear wheel steering. In addition, a new 6WS control law is proposed in order to minimize the sideslip angle. Lane change simulation results demonstrate the advantage of 6WS vehicles with the proposed control law.

  • PDF

Global Strategy Entry Mode Development: Case study of Electric Vehicle Market in Africa

  • Anyim Mokom Brenda
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.330-344
    • /
    • 2023
  • This research report cuts across management sciences (market strategy entry mode development) and innovative technology (Electric Vehicle (EV)) alongside measures to submerge global warming. The development of a successful entry mode for the electric Vehicle into the African continent is the main objective of the study. The study focuses on an analysis of how electric car manufacturers can enter the African market in other to achieve global sustainability and social responsibility. The methodology is based on identifying the factors that affect the choice of an entry mode into international markets by multinational companies desiring to leverage their revenue through a foreign market. It also offered a quantitative approach that can support the economic and sustainability entry mode model for EVs and a qualitative approach of Porter's five forces analysis as an entry mode coaching tool for EVs. These proxies are used in quite a wide range of multivariate statistical methods (trend analysis, ratio, and probability, comparative t-test technique, auto-regression, and ordinary least square technique). The result acknowledges joint venture and setting of the plant (physical presents) as the optimal entry mode in African EV market. It requires the EV manufacturers a tire-free emission innovation technology in order to optimize the global sustainability initiative.

Assessment Method of Effective Data for Duplex TPMS Communications (TPMS 양방향 통신을 위한 유효 데이터 판정기법)

  • Kim, Seong-Min;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.3
    • /
    • pp.499-505
    • /
    • 2012
  • TPMS(Tire Pressure Monitoring System) using the wireless communication technique is defined as the safety aid system to efficiently realize and manage the condition of tires in the vehicle. The wireless communication system of TPMS should suffers from various noise and interferences such as signals of each tire sensor or outside electrical equipments. In order to retain the data reliability of TPMS, we propose an assessment method of the data reliability based on signal-to-interference and noise ratio (SINR) of the received signal. The proposed technique can be widely applied to wireless duplex communication systems based on various sensors. We verify critical SINR values to satisfy data reliabilities of 95%, 97%, and 99% through computer simulation.

Wearing Degree and Uneven Wearing Detection of Tires Using Horizontal Edge Information (가로 방향 에지를 이용한 자동차 타이어의 마모도 측정 및 편마모 여부 검출)

  • Lee, Tae-Hee;Park, Eun-Jin;Kim, Ki-Ju;Choi, Doo-Hyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.6
    • /
    • pp.21-27
    • /
    • 2018
  • Wearing degree and uneven wearing detection algorithm using horizontal edge information is proposed in this paper. The noise in the input image is removed by bilateral filter, and then edges are extracted from the filtered image by using the proposed mask. As the tire is worn, grooves of tire shoulder or sipes are changed more than the vertical grooves. Therefore the edges from grooves of tire shoulder or sipes have more information about the tire wearing than the edges from vertical grooves. Proposed mask that is reflected this feature is used to extract the horizontal edges. After edge extraction, the edge image is represented in two-level system. The edge pixels of the binarization image are used to decide the wearing degree and uneven wearing. This proposed method can be used easily without any other equipments. The proposed method is conducted with a real vehicle, and the experimental results show the good performance of the proposed method in detecting wearing degree and uneven wearing.