• Title/Summary/Keyword: Vegetation data

Search Result 1,471, Processing Time 0.031 seconds

Classification of Forest Vegetation Zone over Southern Part of Korean Peninsula Using Geographic Information Systems (環境因子의 空間分析을 통한 南韓지역의 山林植生帶 구분/지리정보시스템(GIS)에 의한 접근)

  • Lee, Kyu-Sung;Byong-Chun Lee;Joon Hwan Shin
    • The Korean Journal of Ecology
    • /
    • v.19 no.5
    • /
    • pp.465-476
    • /
    • 1996
  • There are several environmental variables that may be influential to the spatial distribution of forest vegetation. To create a map of forest vegetation zone over southern part of Korean Peninsula, digital map layers were produced for each of environmental variables that include topography, geographic locations, and climate. In addition, an extensive set of field survey data was collected at relatively undisturbed forests and they were introduced into the GIS database with exact coordinates of survey sites. Preliminary statistical analysis on the survey data showed that the environmental variables were significantly different among the previously defined five forest vegetation zones. Classification of the six layers of digital map representing environmental variables was carried out by a supervised classifier using the training statistics from field survey data and by a clustering algorithm. Although the maps from two classifiers were somewhat different due to the classification procedure applied, they showed overall patterns of vertical and horizontal distribution of forest zones. considering the spatial contents of many ecological studies, GIS can be used as an important tool to manage and analyze spatial data. This study discusses more about the generation of digital map and the analysis procedure rather than the outcome map of forest vegetation zone.

  • PDF

Vegetation Change Detection in the Sihwa Embankment using Multi-Temporal Satellite Data (다중시기 위성영상을 이용한 시화 방조제 내만 식생변화탐지)

  • Jeong, Jong-Chul;Suh, Young-Sang;Kim, Sang-Wook
    • Journal of Environmental Science International
    • /
    • v.15 no.4
    • /
    • pp.373-378
    • /
    • 2006
  • The western coast of South Korea is famous for its large and broad tidal lands. Nevertheless, land reclamation, which has been conducted on a large scale, such as Sihwa embankment construction project has accelerated coastal environmental changes in the embankment inland. For monitoring of environmental change, vegetation change detecting of the embankment inland were carried out and field survey data compared with Landsat TM, ETM+, IKONOS, and EOC satellite remotely sensed data. In order to utilize multi-temporal remotely sensed images effectively, all data set with pixel size were analyzed by same geometric correction method. To detect the tidal land vegetation change, the spectral characteristics and spatial resolution of Landsat TM and ETM+ images were analyzed by SMA(spectral mixture analysis). We obtained the 78.96% classification accuracy and Kappa index 0.2376 using March 2000 Landsat data. The SMA(spectral mixture analysis) results were considered with comparing of vegetation seasonal change detection method.

Vegetation Cover Type Mapping Over The Korean Peninsula Using Multitemporal AVHRR Data (시계열(時系列) AVHRR 위성자료(衛星資料)를 이용한 한반도 식생분포(植生分布) 구분(區分))

  • Lee, Kyu-Sung
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.4
    • /
    • pp.441-449
    • /
    • 1994
  • The two reflective channels(red and near infrared spectrum) of advanced very high resolution radiometer(AVHRR) data were used to classify primary vegetation cover types in the Korean Peninsula. From the NOAA-11 satellite data archive of 1991, 27 daytime scenes of relatively minimum cloud coverage were obtained. After the initial radiometric calibration, normalized difference vegetation index(NDVI) was calculated for each of the 27 data sets. Four or five daily NDVI data were then overlaid for each of the six months starting from February to November and the maximum value of NDVI was retained for every pixel location to make a monthly composite. The six bands of monthly NDVI composite were nearly cloud free and used for the computer classification of vegetation cover. Based on the temporal signatures of different vegetation cover types, which were generated by an unsupervised block clustering algorithm, every pixel was classified into one of the six cover type categories. The classification result was evaluated by both qualitative interpretation and quantitative comparison with existing forest statistics. Considering frequent data acquisition, low data cost and volume, and large area coverage, it is believed that AVHRR data are effective for vegetation cover type mapping at regional scale.

  • PDF

A Detection of Vegetation Variation Over North Korea using SPOT/VEGETATION NDVI (SPOT/VEGETATION NDVI 자료를 이용한 북한지역 식생 변화 탐지)

  • Yeom, Jong-Min;Han, Kyung-Soo;Lee, Chang-Suk;Park, Youn-Young;Kim, Young-Seup
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.2
    • /
    • pp.28-37
    • /
    • 2008
  • In this study, we perform land surface monitoring of NDVI (Normalized Difference Vegetation Index) variation by using remote sensing data during 1999-2005 over North Korea, which can't easily access to measure directly land surface characteristics due to one of the world's most closed societies. North Korea forest region has most abundant forest vegetation - so called Lungs of Korea in the Korea peninsula. NDVI represents vegetation activity used in many similar studies. In this study, we detect vegetation variation and analysis factors of the change over North Korea. By using variation of NDVI, we can infer that effect of drought over North Korea, and reduced vegetation indices by typhoon in North Korea. Land surface type except barren ground with decreased NDVI value is considered as when North Korea region was suffering from drought and typhoon effects, which show lower than mean of 7-year NDVI value. Especially, in recently, the food production of North Korea with political and economical issues can be inferred indirectly these trends by using estimated output data from this study.

  • PDF

Measurement and Modeling of Vegetation Loss in the Frequency Range of 1 $\sim$ 6 (1 $\sim$ 6 GHz대역 수풀손실 특성 측정 및 모델링)

  • Park, Yong-Ho;Jung, Myoung-Won;Han, Il-Tak;Pack, Jeong-Ki
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.163-168
    • /
    • 2005
  • Attenuation in vegetation is important, for both terrestrial and earth-space systems. However, the wide range of conditions and types of foliage makes it difficult to develop a generalized prediction procedure. Currently, there is also a lack of suitably prediction model and measured experimental data for vegetation loss. So in this paper, vegetation loss data for four different tree-species, including Dawn-redwood tree, Plane tree, Pine tree and Fir tree are obtained by measurement in the frequency range of 1.0 $\sim$ 6.0 GHz. The through or scattered component is calculated using a model based upon the theory of RET(Radiative Energy Transfer) and RET modeling parameters are extracted from the measured data.

  • PDF

EVALUATION FOR DAMAGED DEGREE OF VEGETATION BY FOREST FIRE USING LIDARAND DIGITALAERIAL PHOTOGRAPH

  • Kwak, Doo-Ahn;Chung, Jin-Won;Lee, Woo-Kyun;Lee, Seung-Ho;Cho, Hyun-Kook;We, Gwang-Jae;Kim, Tae-Min
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.533-536
    • /
    • 2007
  • The LiDAR data structure has the potential for modeling in three dimensions because the LiDAR data can represent voxels with z value under certain defined conditions. Therefore, it is possible to classify the physical damaged degree of vegetation by forest fire as using the LiDAR data because the physical loss of canopy height and width by forest fire can be relative to an amount of points reached to the ground through the canopy of damaged forest. On the other hand, biological damage of vegetation by forest fire can be explained using the NDVI (Normalized Difference Vegetation Index) which show vegetation vitality. In this study, we graded the damaged degree of vegetation by forest fire in Yangyang-Gun of South Korea using the LiDAR data for physical grading and digital aerial photograph including Red, Green, Blue and Near Infra-Red bands for biological grading. The LiDAR data was classified into 2 classes, of which one was Serious Physical Damaged (SPD) and the other was Light Physical Damaged (LPD) area. The NDVI was also classified into 2 classes which are Serious Biological Damaged (SBD) and Light Biological Damaged (LBD) area respectively. With each 2 classes ofthe LiDAR data and NDVI, the damaged area by forest fire was graded into 4 degrees like damaged class 1,2,3 and 4 grade. As a result of this study, 1 graded area was the broadest and next was the 3 grade. With this result, we could know that the burned area by forest fire in Yangyang-Gun was damaged rather biologically because the NDVI in 1 and 3 grade appeared low value whereas the LiDAR data in 1 and 3 grade included light physical damage like the LPD.

  • PDF

Vegetation Cover Characteristics for Five Soils at Chungbuk Prefecture and Tideland Soil Using Remote Sensing Technology (원격탐사(RS) 기법을 이용한 충북지역 5개 토양과 갯벌토양의 식생피복특성)

  • Park, Jong-Hwa
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.3
    • /
    • pp.9-16
    • /
    • 2003
  • In support of remote sensing applications for monitoring processes of the Earth system, research was conducted to analyze the basic spectral response related to background soil and vegetation cover characteristics in the visible and reflective infrared wavelengths. Surface samples of seven stations were examined. Five soils were from land-field and two soils from tideland areas. The vegetation cover experiment was conducted on seven soil samples with known natural moisture content (%) by weight. To study the effect of vegetation cover, spectral measurements were taken on five or six vegetation cover treatments of the seven soils with 3 replications in air dry conditions. For collecting RS base data, used spectro-radiometer that measures reflection characteristics between 300~1,100nm was used and measured the reflection of vegetation from bean leaves. The relationships were evaluated for both a general soil line and for the individual lines of five soils, under air-dried condition as well as different vegetation cover ratio, through the determination of the line parameters. As vegetation cover ratio in bean leaves increases, features of soil reflectance decrease and those of plant reflectance become more and more apparent. In proportion to vegetation cover rate, near-infrared reflectance increased and visible reflectance decreased. Analysis results are compared to commonly used vegetation indices(RVI and NDVI ).

Actual Vegetation and Potential Natural Vegetation of Seonunsan Area, Southwestern Korea (선운산 지역의 현존식생과 잠재자연식생)

  • Kim, Jeong-Un;Yang-Jai Yim
    • The Korean Journal of Ecology
    • /
    • v.10 no.4
    • /
    • pp.159-164
    • /
    • 1987
  • The potential natural vegetation of Seonunsan area, southwestern Korea, was inferred from the actual vegetation. In previous two papers the plant communities of actual vegetation of the area is grouped into nine types; Quercus variabilis, Pinus densiflora, Carpinus tschonoskii, Quercus serrata, Camellia japonica (plantation), Quercus aliena, Pinus thunbergii, Zelkova serrata and Carpinus laxiflora forest. With the analysis of species richness, age structure and various informations on vegetation changes of the plant communities, two paths of late stage succession are suggested in climatic climax starting from Pinus densiflora forest in the area. One is through Quercus variabilis forest to Carpinus laxiflora forest in upper parts of the mountain and the other through Quercus aliena forest to Carpinus tschonoskii forest in lower parts of the mountain. With analysis of actual vegetation and the examination of informations including human activities in the area, the potential natural vegetation of the area was inferred. The potential natural vegetation of the area was mainly composed of Carpinus laxiflora, Carpinus tschonoskii, Pinus densiflora and Zelkova serrata forest. The actual vegetation map and potential natural vegetation map (scale, 1:25, 000) and other results from this study might be the useful data for the protection of natural vegetation and restoration of the current vegetation.

  • PDF

Study on the Vegetation of Jindo County (珍島의 植生)

  • Kim, Jong-Hong
    • The Korean Journal of Ecology
    • /
    • v.13 no.1
    • /
    • pp.33-50
    • /
    • 1990
  • The flora and vegetation of Jindo Archipelago were investigated from 1985 to 1989. In the area, 1089 species, 3 subspecies, 133 varieties, and 22 forma of vascular plants were recovered. From the data, the ecological characteristics such a value 1.39 in Pte-Q and Ch-$D_1-R_3$-e in biological type were recognized. Vegetation of the area is classified into 8 communities: Pinus thunbergii-, Quercus serrata-, Q. variabilis-, Carpinus coreana-, Prunus sargentii-, Camellia japonica-, Castanopsis cuspidata var. sieboldii and Q. acuta-community. The actual vegetation map was conducted with the materials obtained by the investigation of the vegetation in 103 area.

  • PDF

Comparison of the NDVI, ARVI and AFRI vegetation index, along with their relations with the AOD using SPOT 4 Vegetation data

  • Liu, Gin-Rong;Liang, Chih-Kang;Kuo, Tsung-Hua
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.582-584
    • /
    • 2003
  • This paper explores two such indexes----the Aerosol Free Vegetation Index (AFRI) and the Atmospherically Resistant Vegetation Index (ARVI). Comparisons were made with the NDVI (normalized vegetation index) to see if they indeed performed better. In general, the results showed that the AFRI and ARVI (with gamma=1) did indeed perform better than their NDVI counterpart study with the related channels were employed.

  • PDF