• Title/Summary/Keyword: Vector-space model

Search Result 367, Processing Time 0.026 seconds

Fast FCS-MPC-Based SVPWM Method to Reduce Switching States of Multilevel Cascaded H-Bridge STATCOMs

  • Wang, Xiuqin;Zhao, Jiwen;Wang, Qunjing;Li, Guoli;Zhang, Maosong
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.244-253
    • /
    • 2019
  • Finite control set model-predictive control (FCS-MPC) has received increasing attentions due to its outstanding dynamic performance. It is being widely used in power converters and multilevel inverters. However, FCS-MPC requires a lot of calculations, especially for multilevel-cascaded H-bridge (CHB) static synchronous compensators (STATCOMs), since it has to take account of all the feasible voltage vectors of inverters. Hence, an improved five-segment space vector pulse width modulation (SVPWM) method based on the non-orthogonal static reference frames is proposed. The proposed SVPWM method has a lower number of switching states and requires fewer computations than the conventional method. As a result, it makes FCS-MPC more efficient for multilevel cascaded H-bridge STATCOMs. The partial cost function is adopted to sequentially solve for the reference current and capacitor voltage. The proposed FCS-MPC method can reduce the calculation burden of the FCS-MPC strategy, and reduce both the switching frequency and power losses. Simulation and experimental results validate the excellent performance of the proposed method when compared with the conventional approach.

A New Approach to Automatic Keyword Generation Using Inverse Vector Space Model (키워드 자동 생성에 대한 새로운 접근법: 역 벡터공간모델을 이용한 키워드 할당 방법)

  • Cho, Won-Chin;Rho, Sang-Kyu;Yun, Ji-Young Agnes;Park, Jin-Soo
    • Asia pacific journal of information systems
    • /
    • v.21 no.1
    • /
    • pp.103-122
    • /
    • 2011
  • Recently, numerous documents have been made available electronically. Internet search engines and digital libraries commonly return query results containing hundreds or even thousands of documents. In this situation, it is virtually impossible for users to examine complete documents to determine whether they might be useful for them. For this reason, some on-line documents are accompanied by a list of keywords specified by the authors in an effort to guide the users by facilitating the filtering process. In this way, a set of keywords is often considered a condensed version of the whole document and therefore plays an important role for document retrieval, Web page retrieval, document clustering, summarization, text mining, and so on. Since many academic journals ask the authors to provide a list of five or six keywords on the first page of an article, keywords are most familiar in the context of journal articles. However, many other types of documents could not benefit from the use of keywords, including Web pages, email messages, news reports, magazine articles, and business papers. Although the potential benefit is large, the implementation itself is the obstacle; manually assigning keywords to all documents is a daunting task, or even impractical in that it is extremely tedious and time-consuming requiring a certain level of domain knowledge. Therefore, it is highly desirable to automate the keyword generation process. There are mainly two approaches to achieving this aim: keyword assignment approach and keyword extraction approach. Both approaches use machine learning methods and require, for training purposes, a set of documents with keywords already attached. In the former approach, there is a given set of vocabulary, and the aim is to match them to the texts. In other words, the keywords assignment approach seeks to select the words from a controlled vocabulary that best describes a document. Although this approach is domain dependent and is not easy to transfer and expand, it can generate implicit keywords that do not appear in a document. On the other hand, in the latter approach, the aim is to extract keywords with respect to their relevance in the text without prior vocabulary. In this approach, automatic keyword generation is treated as a classification task, and keywords are commonly extracted based on supervised learning techniques. Thus, keyword extraction algorithms classify candidate keywords in a document into positive or negative examples. Several systems such as Extractor and Kea were developed using keyword extraction approach. Most indicative words in a document are selected as keywords for that document and as a result, keywords extraction is limited to terms that appear in the document. Therefore, keywords extraction cannot generate implicit keywords that are not included in a document. According to the experiment results of Turney, about 64% to 90% of keywords assigned by the authors can be found in the full text of an article. Inversely, it also means that 10% to 36% of the keywords assigned by the authors do not appear in the article, which cannot be generated through keyword extraction algorithms. Our preliminary experiment result also shows that 37% of keywords assigned by the authors are not included in the full text. This is the reason why we have decided to adopt the keyword assignment approach. In this paper, we propose a new approach for automatic keyword assignment namely IVSM(Inverse Vector Space Model). The model is based on a vector space model. which is a conventional information retrieval model that represents documents and queries by vectors in a multidimensional space. IVSM generates an appropriate keyword set for a specific document by measuring the distance between the document and the keyword sets. The keyword assignment process of IVSM is as follows: (1) calculating the vector length of each keyword set based on each keyword weight; (2) preprocessing and parsing a target document that does not have keywords; (3) calculating the vector length of the target document based on the term frequency; (4) measuring the cosine similarity between each keyword set and the target document; and (5) generating keywords that have high similarity scores. Two keyword generation systems were implemented applying IVSM: IVSM system for Web-based community service and stand-alone IVSM system. Firstly, the IVSM system is implemented in a community service for sharing knowledge and opinions on current trends such as fashion, movies, social problems, and health information. The stand-alone IVSM system is dedicated to generating keywords for academic papers, and, indeed, it has been tested through a number of academic papers including those published by the Korean Association of Shipping and Logistics, the Korea Research Academy of Distribution Information, the Korea Logistics Society, the Korea Logistics Research Association, and the Korea Port Economic Association. We measured the performance of IVSM by the number of matches between the IVSM-generated keywords and the author-assigned keywords. According to our experiment, the precisions of IVSM applied to Web-based community service and academic journals were 0.75 and 0.71, respectively. The performance of both systems is much better than that of baseline systems that generate keywords based on simple probability. Also, IVSM shows comparable performance to Extractor that is a representative system of keyword extraction approach developed by Turney. As electronic documents increase, we expect that IVSM proposed in this paper can be applied to many electronic documents in Web-based community and digital library.

Text-mining Based Graph Model for Keyword Extraction from Patent Documents (특허 문서로부터 키워드 추출을 위한 위한 텍스트 마이닝 기반 그래프 모델)

  • Lee, Soon Geun;Leem, Young Moon;Um, Wan Sup
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.335-342
    • /
    • 2015
  • The increasing interests on patents have led many individuals and companies to apply for many patents in various areas. Applied patents are stored in the forms of electronic documents. The search and categorization for these documents are issues of major fields in data mining. Especially, the keyword extraction by which we retrieve the representative keywords is important. Most of techniques for it is based on vector space model. But this model is simply based on frequency of terms in documents, gives them weights based on their frequency and selects the keywords according to the order of weights. However, this model has the limit that it cannot reflect the relations between keywords. This paper proposes the advanced way to extract the more representative keywords by overcoming this limit. In this way, the proposed model firstly prepares the candidate set using the vector model, then makes the graph which represents the relation in the pair of candidate keywords in the set and selects the keywords based on this relationship graph.

Chatbot Design Method Using Hybrid Word Vector Expression Model Based on Real Telemarketing Data

  • Zhang, Jie;Zhang, Jianing;Ma, Shuhao;Yang, Jie;Gui, Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1400-1418
    • /
    • 2020
  • In the development of commercial promotion, chatbot is known as one of significant skill by application of natural language processing (NLP). Conventional design methods are using bag-of-words model (BOW) alone based on Google database and other online corpus. For one thing, in the bag-of-words model, the vectors are Irrelevant to one another. Even though this method is friendly to discrete features, it is not conducive to the machine to understand continuous statements due to the loss of the connection between words in the encoded word vector. For other thing, existing methods are used to test in state-of-the-art online corpus but it is hard to apply in real applications such as telemarketing data. In this paper, we propose an improved chatbot design way using hybrid bag-of-words model and skip-gram model based on the real telemarketing data. Specifically, we first collect the real data in the telemarketing field and perform data cleaning and data classification on the constructed corpus. Second, the word representation is adopted hybrid bag-of-words model and skip-gram model. The skip-gram model maps synonyms in the vicinity of vector space. The correlation between words is expressed, so the amount of information contained in the word vector is increased, making up for the shortcomings caused by using bag-of-words model alone. Third, we use the term frequency-inverse document frequency (TF-IDF) weighting method to improve the weight of key words, then output the final word expression. At last, the answer is produced using hybrid retrieval model and generate model. The retrieval model can accurately answer questions in the field. The generate model can supplement the question of answering the open domain, in which the answer to the final reply is completed by long-short term memory (LSTM) training and prediction. Experimental results show which the hybrid word vector expression model can improve the accuracy of the response and the whole system can communicate with humans.

Line-of-Sight (LOS) Vector Adjustment Model for Restitution of SPOT 4 Imagery (SPOT 4 영상의 기하보정을 위한 시선 벡터 조정 모델)

  • Jung, Hyung-Sup
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.247-254
    • /
    • 2010
  • In this paper, a new approach has been studied correcting the geometric distortion of SPOT 4 imagery. Two new equations were induced by the relationship between satellite and the Earth in the space. line-of-sight (LOS) vector adjustment model for SPOT 4 imagery was implemented in this study. This model is to adjust LOS vector under the assumption that the orbital information of satellite provided by receiving station is uncertain and this uncertainty makes a constant error over the image. This model is verified using SPOT 4 satellite image with high look angle and thirty five ground points, which include 10 GCPs(Ground Control Points) and 25 check points, measured by the GPS. In total thirty five points, the geometry of satellite image calculated by given satellite information(such as satellite position, velocity, attitude and look angles, etc) from SPOT 4 satellite image was distorted with a constant error. Through out the study, it was confirmed that the LOS vector adjustment model was able to be applied to SPOT4 satellite image. Using this model, RMSEs (Root Mean Square Errors) of twenty five check points taken by increasing the number of GCPs from two to ten were less than one pixel. As a result, LOS vector adjustment model could efficiently correct the geometry of SPOT4 images with only two GCPs. This method also is expected to get good results for the different satellite images that are similar to the geometry of SPOT images.

Design of nonlinear optimal regulators using lower dimensional riemannian geometric models

  • Izawa, Yoshiaki;Hakomori, Kyojiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.628-633
    • /
    • 1994
  • A new Riemannian geometric model for the controlled plant is proposed by imbedding the control vector space in the state space, so as to reduce the dimension of the model. This geometric model is derived by replacing the orthogonal straight coordinate axes on the state space of a linear system with the curvilinear coordinate axes. Therefore the integral manifold of the geometric model becomes homeomorphic to that of fictitious linear system. For the lower dimensional Riemannian geometric model, a nonlinear optimal regulator with a quadratic form performance index which contains the Riemannian metric tensor is designed. Since the integral manifold of the nonlinear regulator is determined to be homeomorphic to that of the linear regulator, it is expected that the basic properties of the linear regulator such as feedback structure, stability and robustness are to be reflected in those of the nonlinear regulator. To apply the above regulator theory to a real nonlinear plant, it is discussed how to distort the curvilinear coordinate axes on which a nonlinear plant behaves as a linear system. Consequently, a partial differential equation with respect to the homeomorphism is derived. Finally, the computational algorithm for the nonlinear optimal regulator is discussed and a numerical example is shown.

  • PDF

Development of Planetary Ephemeris Generation Program for Satellite (위성 탑재용 천문력 생성 프로그램 개발)

  • Lee, Kwang-Hyun;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.220-227
    • /
    • 2019
  • The satellites in orbit use a sun reference vector from solar model based the ephemeris. To get the ephemeris, we use DE-Series, an ephemeris developed by the Jet Propulsion Laboratory (JPL), or the reference vector generation formula proposed by Vallado. The DE-Series provides the numerical coefficients of Chebyshev polynomials, which have the advantage of high precision, but there is a computational burden on the satellite. The Vallado's method has low accuracy, although the sun vector can be easily obtained through the sun vector generation equation. In this paper, we have developed a program to provide the Chebyshev polynomial coefficients to obtain the sun position coordinates in the inertial coordinate system. The proposed method can improve the accuracy compared to the conventional method and can be used for high - performance, high - precision nano satellite missions.

A Study of Automatic Recognition on Target and Flame Based Gradient Vector Field Using Infrared Image (적외선 영상을 이용한 Gradient Vector Field 기반의 표적 및 화염 자동인식 연구)

  • Kim, Chun-Ho;Lee, Ju-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.63-73
    • /
    • 2021
  • This paper presents a algorithm for automatic target recognition robust to the influence of the flame in order to track the target by EOTS(Electro-Optical Targeting System) equipped on UAV(Unmanned Aerial Vehicle) when there is aerial target or marine target with flame at the same time. The proposed method converts infrared images of targets and flames into a gradient vector field, and applies each gradient magnitude to a polynomial curve fitting technique to extract polynomial coefficients, and learns them in a shallow neural network model to automatically recognize targets and flames. The performance of the proposed technique was confirmed by utilizing the various infrared image database of the target and flame. Using this algorithm, it can be applied to areas where collision avoidance, forest fire detection, automatic detection and recognition of targets in the air and sea during automatic flight of unmanned aircraft.

Support-vector-machine Based Sensorless Control of Permanent Magnet Synchronous Motor

  • Back, Woon-Jae;Han, Dong-Chang;Kim, Jong-Mu;Park, Jung-Il;Lee, Suk-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.149-152
    • /
    • 2004
  • Speed and torque control of PMSM(Permanent Magnet Synchronous Motor) are usually achieved by using position and speed sensors which require additional mounting space, reduce the reliability in harsh environments and increase the cost of a motor. Therefore, many studies have been performed for the elimination of speed and position sensors. In this paper, a novel speed sensorless control of a permanent magnet synchronous motor based on SVMR(Support Vector Machine Regression) is presented. The SVM regression method is an algorithm that estimates an unknown mapping between a system's input and outputs, from the available data or training data. Two well-known different voltage model is necessary to estimate the speed of a PMSM. The validity and the usefulness of proposed algorithm are thoroughly verified through numerical simulation.

  • PDF

Comparing Korean Spam Document Classification Using Document Classification Algorithms (문서 분류 알고리즘을 이용한 한국어 스팸 문서 분류 성능 비교)

  • Song, Chull-Hwan;Yoo, Seong-Joon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10c
    • /
    • pp.222-225
    • /
    • 2006
  • 한국은 다른 나라에 비해 많은 인터넷 사용자를 가지고 있다. 이에 비례해서 한국의 인터넷 유저들은 Spam Mail에 대해 많은 불편함을 호소하고 있다. 이러한 문제를 해결하기 위해 본 논문은 다양한 Feature Weighting, Feature Selection 그리고 문서 분류 알고리즘들을 이용한 한국어 스팸 문서 Filtering연구에 대해 기술한다. 그리고 한국어 문서(Spam/Non-Spam 문서)로부터 영사를 추출하고 이를 각 분류 알고리즘의 Input Feature로써 이용한다. 그리고 우리는 Feature weighting 에 대해 기존의 전통적인 방법이 아니라 각 Feature에 대해 Variance 값을 구하고 Global Feature를 선택하기 위해 Max Value Selection 방법에 적용 후에 전통적인 Feature Selection 방법인 MI, IG, CHI 들을 적용하여 Feature들을 추출한다. 이렇게 추출된 Feature들을 Naive Bayes, Support Vector Machine과 같은 분류 알고리즘에 적용한다. Vector Space Model의 경우에는 전통적인 방법 그대로 사용한다. 그 결과 우리는 Support Vector Machine Classifier, TF-IDF Variance Weighting(Combined Max Value Selection), CHI Feature Selection 방법을 사용할 경우 Recall(99.4%), Precision(97.4%), F-Measure(98.39%)의 성능을 보였다.

  • PDF