자율주행 시스템에서, 카메라에 포착된 영상을 통하여 보행자를 분류하는 기능은 보행자 안전을 위하여 매우 중요하다. 기존에는 HOG(Histogram of Oriented Gradients)나 SIFT(Scale-Invariant Feature Transform) 등으로 보행자의 특징을 추출한 후 SVM(Support Vector Machine)으로 분류하는 기술을 사용했었으나, 보행자 특징을 위와 같이 수동(handcrafted)으로 추출하는 것은 많은 한계점을 가지고 있다. 따라서 본 논문에서는 CNN(Convolutional Neural Network)의 깊은 특징(deep features)과 전이학습(transfer learning)을 사용하여 보행자를 안정적이고 효과적으로 분류하는 방법을 제시한다. 본 논문은 2가지 대표적인 전이학습 기법인 고정특징추출(fixed feature extractor) 기법과 미세조정(fine-tuning) 기법을 모두 사용하여 실험하였고, 특히 미세조정 기법에서는 3가지 다른 크기로 레이어를 전이구간과 비전이구간으로 구분한 후, 비전이구간에 속한 레이어들에 대해서만 가중치를 조정하는 설정(M-Fine: Modified Fine-tuning)을 새롭게 추가하였다. 5가지 CNN모델(VGGNet, DenseNet, Inception V3, Xception, MobileNet)과 INRIA Person데이터 세트로 실험한 결과, HOG나 SIFT 같은 수동적인 특징보다 CNN의 깊은 특징이 더 좋은 성능을 보여주었고, Xception의 정확도(임계치 = 0.5)가 99.61%로 가장 높았다. Xception과 유사한 성능을 내면서도 80% 적은 파라메터를 학습한 MobileNet이 효율성 측면에서는 가장 뛰어났다. 그리고 3가지 전이학습 기법중 미세조정 기법의 성능이 가장 우수하였고, M-Fine 기법의 성능은 미세조정 기법과 대등하거나 조금 낮았지만 고정특징추출 기법보다는 높았다.
본 논문은 의미특징과 워드넷 기반의 의사연관피드백을 이용하여 사용자의 질의에 관련 있는 의미 있는 문장을 추출하여 문서요약을 하는 새로운 방법을 제안한다. 제안된 방법은 비음수 행렬 분해로부터 유도된 의미특정이 문서의 잠재의미를 잘 나타나기 때문에 문서요약의 질을 향상할 수 있다. 또한 의미특정과 워드넷기반의 의사연관피드백을 이용하여서 사용자의 요구사항과 제안방법의 요약결과 사이의 의미적 차이를 감소시킨다. 실험결과 제안방법이 유사도, 비음수행렬분해를 이용한 방법들에 비하여 좋은 성능을 보인다.
본 논문에서는, ad-hoc on-demand distance vector (AODV) 라우팅 프로토콜의 브로드캐스트 스톰 문제가 발생하지 않는 이동 애드혹 네트워크를 위한 새로운 온디맨드 라우팅 프로토콜을 제안한다. 경로요청 패킷을 송신하는 노드와 목적지의 위치 정보를 이용하여, 경로요청 패킷을 전달할 수 있는 후보를 지리적으로 제한한다. 그 다음에, AODV의 원리를 따르는 라우팅 프로토콜들은 최초로 수신된 경로요청 패킷 이외의 중복 수신되는 경로요청 패킷을 모두 버리지만, 제안하는 라우팅 프로토콜은 중복 수신되는 경로요청 패킷을 해석하여, 경로요청 패킷의 불필요한 중복 재방송을 회피하고 송신한 경로요청 패킷에 대한 수동 ACK 기능을 수행한다. 제안하는 라우팅 프로토콜을 AODV의 소스 코드를 수정하여 QualNet으로 구현하고 시뮬레이션을 수행한 결과, 기존 AODV 대비, 노드 밀집도가 높고 트래픽이 많은 네트워크의 패킷 전달 비율 및 시간 지연을 크게 향상시킨다.
Since pipes with wall-thinning defects can collapse at fluid pressure that are lower than expected, the collapse moment of wall-thinned pipes should be determined accurately for the safety of nuclear power plants. Wall-thinning defects, which are mostly found in pipe bends and elbows, are mainly caused by flow-accelerated corrosion. This lowers the failure pressure, load-carrying capacity, deformation ability, and fatigue resistance of pipe bends and elbows. This paper offers a support vector regression (SVR) model further enhanced with a fuzzy algorithm for calculation of the collapse moment and for evaluating the integrity of wall-thinned piping systems. The fuzzy support vector regression (FSVR) model is applied to numerical data obtained from finite element analyses of piping systems with wall-thinning defects. In this paper, three FSVR models are developed, respectively, for three data sets divided into extrados, intrados, and crown defects corresponding to three different defect locations. It is known that FSVR models are sufficiently accurate for an integrity evaluation of piping systems from laser or ultrasonic measurements of wall-thinning defects.
본 논문은 사용자와 로봇의 통신을 통해 인간의 손을 대신하여 드로잉(Drawing)을 하는 시스템 설계 및 구현을 하였다. 컴퓨터 안에서 작업을 볼 수 있는 가상 환경과 실제 로봇(Robot)이 드로잉을 하는 현실 환경을 연동하기 위한 UI(User Interface)를 제공하여 사용자의 편의를 돕는 시스템을 제작하였다. 시스템의 UI는 넷빈(NetBean) 툴 안에서 AWT(Abstract Window Toolkit)를 이용하였고, 드로잉을 하기 위해서 벡터(Vector) 방식의 SVG(Scalable Vector Graphics) 파일을 기반으로 하여 이미지 정보를 얻어 표현하였다. 이 시스템은 실시간 통신으로 사용자 요구에 따라 원하는 이미지를 만들어 낼 수 있으며, 이미지 작업의 결과에만 그치는 것이 아닌 드로잉을 하는 과정에서 하나의 퍼포먼스(Performance)로 작용할 수가 있다. 본 연구는 사용자의 선택에 따라 실시간으로 작동하는 모습을 통하여 드로잉 하는 작업 과정 자체를 하나의 퍼포먼스로 볼 수 있도록 한다.
문자인식에 대한 연구는 주로 한글인식에 대해서만 이루어져 왔는데, 대부분의 문서는 한글 뿐만 아니라 여러 종류의 문자가 포함되어 있다. 따라서, 본 논문에서는 다중 크기, 다중 활자체, 다자종 문자가 포함되어 있는 한글문서를 인식할 수 있는 문자인식 시스템을 구현하였다. CombNET 구조를 갖는 신경회로망을 자종별로 구성하여, 문자인식시에 문자를 구별하지 않고 인식하는 방법을 제안하였다. CombNET 구조의 상단부를 차지하는 Kohonen의 SOFM 신경망을 이용하여 한글과 한자는 36개, 영숫자는 16개의 유형으로 분류하고 각 유형에 대해서 CombNET 구조의 하단부에 있는 BP 네트워크를 이용하여 문자인식을 수행하였다. 실험결과 학습 데이타에 대해서는 95.6%의 인식율을 나타내었고, 실제문서에 대해서도 92.6%의 인식율과 초당 10.3자의 인식속도를 보임으로써 제안된 인식 시스템의 유효성을 입증하였다.
지금까지 태반에서 monoamine들을 재 흡수할 수 있는 몇 가지 membrane transporter들이 발현됨이 보고되었다. 그러나 카테콜라민 트렌스포터(norepinephrine transporter, NET)의 발현과 부인과 질환을 포함한 태반 발달과의 연관성에 관한 연구는 거의 보고된 것이 없다. 본 연구의 목적은 태반에서 NET의 발현을 동정하고, 그 기능을 알아보고자 하였다. 이를 위해 정상과 자간전증(preeclampsia) 태반에서 각각 NET 단백질을 동정하고, 영양막세포주인 HTR8-SV/neo 영양막 세포에 NET 유전자를 주입 후 그 기능을 분석하였다. NET 발현을 분석하고자 태반조직에서 다음과 같이 환자를 분류하여 semi-quantitative RT-PCR과 면역조직화학 방법을 사용하였다. 분만 고통이 없는 산모의 태반을 중심으로(none underwent labor): 1) 만기 정상 태반(term normal placenta)(n=15); 2) 만기 자간전증 태반(term with preeclamptic placenta)(n=15); 3) 중기 자간전증 태반(pre-term preeclamptic placenta)(n=11)을 수집하여, NET 발현을 RNA 수준에서 분석한 결과, mRNA 분석에서는 NET 유전자가 정상 태반 조직보다 자간전증 태반에서 낮게 발현되는 것을 확인하였다. 그러나 Western blot을 통한 NET 단백질의 변화는 거의 없는 것으로 확인되었다. HTR8-SV/neo 영양막세포를 이용하여, NET 유전자의 기능을 알아보고자 NET 유전자의 플라스미드(a plasmid vector for NET gene)와 siRNA(NET gene-specific siRNA)을 HTR8-SV/neo 영양막 세포에 24시간 동안 각각 핵 내 주입하고, NET 유전자 발현에 따른 침윤은 NET 유전자를 증가시킨 경우 대조군보다 2.5배(p<0.05) 촉진시키는 것으로 확인됐으며, NET 유전자를 감소시킨 경우는 침윤능력이 감소하는 경향이 관찰되었다. 또한 NET의 과도한 고발현 또는 저발현은 MMP-2와 MMP-9 발현과 활성을 저해하는 것이 관찰하였다. 따라서 자간전증에서 NET의 발현 감소는 영양막세포의 침윤능력을 억제하는 요인이 될 수 있다. 그러므로 이러한 결과들은 영양막세포의 침윤 기전뿐만 아니라 자간전증을 포함한 부인과 질환의 기초 연구에 지침을 제공할 것이다.
The wireless medium is known to be time-varying which could affect and result to a poor network's performance. As a solution, an opportunistic scheduling and power control algorithm based on IEEE 802.11 MAC protocol is proposed in this paper. The algorithm opportunistically exploits the channel condition for better network performance. Convex optimization problems were also formulated i.e. the overall transmission power of the system is minimized and the "net-utility" of he system is maximized. We have proven that an optimal transmission power vector may exist, satisfying the maximum power and SINR constraints at all receivers, thereby minimizing overall transmission power and maximizing net-utility of the system.
한국서해안 조석간조들의 토사이동방향을 Kenyon 등(1981)이 제시한 방법에 의해 추정하였다. 이 추정결과와 동지나해 조석수치 모델에 의한 M2와 M4 분조의 최대해안마찰응력벡터가 제시한 전회의 추정(최, 1983)과 비교한 결과는 좋은 일치를 보였다. 지역적 토사이동이 근래 준#된 수로방향으로 추정되는 중앙#퇴의 철저한 조사가 추후의 연구로서 제시되었는 바 본 연구는 황해의 퇴적동역학을 규명하려는 일련의 연구의 초기작업으로 수행되었다.
We present the relationship between vector magnetic field parameters and solar major flare occurrence rate. Based on this, we are developing a forecast model of major flare (M and X-class) occurrence rate within a day using hourly vector magnetic field data of Space-weather HMI Active Region Patch (SHARP) from May 2010 to April 2017. In order to reduce the projection effect, we use SHARP data whose longitudes are within ${\pm}60$ degrees. We consider six SHARP magnetic parameters (the total unsigned current helicity, the total photospheric magnetic free energy density, the total unsigned vertical current, the absolute value of the net current helicity, the sum of the net current emanating from each polarity, and the total unsigned magnetic flux) with high F-scores as useful predictors of flaring activity from Bobra and Couvidat (2015). We have considered two cases. In case 1, we have divided the data into two sets separated in chronological order. 75% of the data before a given day are used for setting up a flare model and 25% of the data after that day are used for test. In case 2, the data are divided into two sets every year in order to reduce the solar cycle (SC) phase effect. All magnetic parameters are divided into 100 groups to estimate the corresponding flare occurrence rates. The flare identification is determined by using LMSAL flare locations, giving more numbers of flares than the NGDC flare list. Major results are as follows. First, major flare occurrence rates are well correlated with six magnetic parameters. Second, the occurrence rate ranges from 0.001 to 1 for M and X-class flares. Third, the logarithmic values of flaring rates are well approximated by two linear equations with different slopes: steeper one at lower values and lower one at higher values. Fourth, the sum of the net current emanating from each polarity gives the minimum RMS error between observed flare rates and predicted ones. Fifth, the RMS error for case 2, which is taken to reduce SC phase effect, are smaller than those for case 1.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.